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Modularity is one of the most prominent properties of real-world complex networks. Here, we address the
issue of module identification in two important classes of networks: bipartite networks and directed unipartite
networks. Nodes in bipartite networks are divided into two nonoverlapping sets, and the links must have one
end node from each set. Directed unipartite networks only have one type of node, but links have an origin and
an end. We show that directed unipartite networks can be conveniently represented as bipartite networks for
module identification purposes. We report on an approach especially suited for module detection in bipartite
networks, and we define a set of random networks that enable us to validate the approach.
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I. INTRODUCTION

Units in physical, chemical, biological, technological, and
social systems interact with each other defining complex net-
works that are neither fully regular nor fully random �1–3�.
Among the most prominent and ubiquitous properties of
these networks is their modular structure �2,4�, that is, the
existence of distinct groups of nodes with an excess of con-
nections to each other and fewer connections to other nodes
in the network.

The existence of modular structure is important in several
regards. First, modules critically affect the dynamic behavior
of the system. The modular structure of the air transportation
system �5�, for example, is likely to slow down the spread of
viruses at an international scale �6� and thus somewhat mini-
mize the effects of high-connectivity nodes that may other-
wise function as “super-spreaders” �7,8�. Second, different
modules in a complex modular network can have different
structural properties �9�. Therefore, characterizing the net-
work using only global average properties may result in the
misrepresentation of the structure of many, if not all, of the
modules. Finally, the modular structure of networks is likely
responsible for at least some of the correlations �e.g., degree-
degree correlations �10–14��, that have attracted the interest
of researchers in recent years �9�.

For the above reasons, considerable attention has been
given to the development of algorithms and theoretical
frameworks to identify and quantify the modular structure of
networks �see �15�, and references therein�. However, current
research activity has paid little attention, except for a few
studies in sociology �16,17�, to the problem of identifying
modules in a special and important class of networks known
as bipartite networks �or graphs�. Nodes in bipartite networks
are divided into two nonoverlapping sets, and the links must
have one end node from each set. Examples of systems that
are more suitably represented as bipartite networks include
the following:

�i� Protein-protein interaction networks �12,18–20� ob-
tained from yeast two hybrid screening, one set of nodes
represents the bait proteins and the other set represents the
prey or library proteins. Two proteins, a bait and a library
protein, are connected if the library protein binds to the bait.

�ii� Plant-animal mutualistic networks �21,22�, one set
represents animal species and the other set represents plant
species. Links indicate mutualistic relationships between ani-
mals and plants �for example, a certain bird species feeding
on a plant species and dispersing its seeds�.

�iii� Scientific publication networks �23–25�, one set rep-
resents scientists and the other set represents publications. A
link between a scientist and a publication indicates that the
scientist is one of the authors of the publication.

�iv� Artistic collaboration networks �25–27�, one set rep-
resents artists and the other teams. A link indicates the par-
ticipation of an artist in a team.

Another important class of networks for which no sound
module identification methods are available are unipartite di-
rected networks. Examples of directed unipartite networks
include the following:

�i� Food webs �28,29�, nodes represent species and links
indicate trophic interactions in an ecosystem.

�ii� Gene regulatory networks �30�, nodes are genes and
links indicate regulatory interactions.

The usual approach to identify modules in directed net-
works is to disregard the directionality of the connections,
which will fail when different modules are defined based on
incoming and outgoing links.

Here, we address the issue of module identification in
complex bipartite networks. We start by reviewing the ap-
proaches that are currently used heuristically and aprioristi-
cally to solve this problem. We then suggest an approach
especially suited for module detection in bipartite networks,
and define a set of random networks that permit the evalua-
tion of the accuracy of the different approaches. We then
discuss how it is possible to use the same formalism to iden-
tify modules in directed unipartite networks. Our method en-
ables one to independently identify groups of nodes with
similar outgoing connections and groups of nodes with simi-
lar incoming connections.

II. BACKGROUND

For simplicity, from now on we denote the two sets of
nodes in the bipartite network as the set of actors and the set
of teams, respectively. Given a bipartite network, we are in-
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terested in identifying groups �modules� of actors that are
closely connected to each other through coparticipation in
many teams. Of course, one is free to select which set of
nodes in a given network is the “actor set” and which one is
the “team set,” so one can identify modules in either or both
sets of nodes.

We require any module-identification algorithm to fulfill
two quite general conditions: �i� the algorithm needs to be
network independent; and �ii� given the list of links in the
network, the algorithm must determine not only a good par-
tition of the nodes into modules, but also the number of
modules and their sizes.

The first condition is somewhat trivial. We just make it
explicit to exclude algorithms that are designed to work with
a particular network or family of networks, but that will oth-
erwise fail with broad families of networks �for example,
large networks or sparse/dense networks�.

The second condition is much more substantial, as it
makes clear the difference between the module-identification
problem and the graph partitioning problem in computer sci-
ence, in which both the number of groups and the sizes of the
groups are fixed. To use a unipartite network analogy, given
a set of 120 people attending a wedding and information
about who knows whom, the graph partitioning problem is
analogous to optimally setting 12 tables with 10 people in
each table. In contrast, the module-identification problem is
analogous to identifying “natural” groups of people, for ex-
ample, the different families or distinct groups of friends.

The second condition also excludes algorithms �based, for
example, on hierarchical clustering or principal component
analysis �31�� that project network data into some low-
dimensional space without specifying the location of the
boundaries separating the groups. For example, given a den-
dogram generated using hierarchical clustering, one still
needs to decide where to “cut it” in order to obtain the rel-
evant modules. To be sure, one can propose a combination of
algorithms that first project the data into some low-
dimensional space and then set the boundaries, and assess
the accuracy of the method. In general, however, one cannot
evaluate the performance of hierarchical clustering, given
that hierarchical clustering does not provide a single solution
to module-identification problem. Neither can one test the
infinite combinations of dimensionality reduction algorithms
with techniques for the actual selection of modules.

Freeman �32� has recently compiled a collection of 21
algorithms that have been used in the social networks litera-
ture to identify modules in bipartite networks. To the best of
our understanding none of the algorithms described there
satisfies the two conditions above. Among the statistical
physics community, on the other hand, the common practice
is to project the bipartite network onto a unipartite actors’
network, and then identify modules in the projection. In the
scientists’ projection of a scientific publication network, for
example, two scientists are connected if they have coau-
thored one or more papers. The caveat of this approach is
that, even if the projection is weighted �by, for example, the
number of papers coauthored by a pair of scientists�, some
information of the original bipartite network, like the sizes of
the teams, is lost in the projection. Here, we suggest an al-
ternative to existing approaches to identify modules in com-
plex bipartite networks.

III. MODULARITY FOR BIPARTITE NETWORKS

A widely used and quite successful method for the iden-
tification of modules in unipartite networks is the maximiza-
tion of a modularity function. Although this method has limi-
tations �33–35�, it yields the most accurate results reported in
the literature for a wide family of random networks with
prescribed modular structure �15,36,37�.

In the same spirit, here we define a modularity function
that, upon optimization, yields a partition of the actors in a
bipartite network into modules. By doing this, the module
identification problem becomes a combinatorial optimization
problem that is analogous to the identification of the ground
state of a disordered magnetic system �38,39�.

A ubiquitous modularity function for unipartite networks
is the Newman-Girvan modularity �40�. The rationale behind
this modularity is that, in a modular network, links are not
homogeneously distributed. Thus, a partition with high
modularity is such that the density of links inside modules is
significantly higher than the random expectation for such
density. Specifically, the modularity M�P� of a partition P
of a network into modules is

M�P� = �
s=1

NM � ls

L
− � ds

2L
�2	 , �1�

where NM is the number of modules, L is the number of links
in the network, ls is the number of links between nodes in
module s, and ds is the sum of the degrees of the nodes in
module s. Then ls /L is the fraction of links inside module s,
and �ds /2L�2 is an approximation �assuming that self-links
and multiple links between nodes are allowed� to the fraction
of links one would expect to have inside the module from
chance alone.

We define a modularity MB�P� that can be applied to
identify modules in bipartite networks. We start by consider-
ing the expected number of times that actor i belongs to a
team comprised of ma actors,

ma
ti

�
k

tk

, �2�

where ti is the total number of teams to which actor i be-
longs. Similarly, the expected number of times that two ac-
tors i and j belong to team a is

ma�ma − 1�
titj

��
k

tk�2 . �3�

Therefore, the average number of teams in which i and j are
expected to be together is

�
a

ma�ma − 1�

��
a

ma�2 titj , �4�

where we have used the identity �ama=�ktk. Note that
�ama�ma−1� and ��ama�2 are global network properties,
which do not depend on the pair of actors considered.
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Equation �4� enables us to define the bipartite modularity
as the cumulative deviation from the random expectation

MB�P� = �
s=1

NM 
 �
i�j�s

cij

�
a

ma�ma − 1�
−

�
i�j�s

titj

��
a

ma�2� , �5�

where cij is the actual number of teams in which i and j are
together. For convenience, we exclude the irrelevant diago-
nal term i= j from the sums �48�, and normalize the modu-
larity so that MB→1 when �i� all actors in each team belong
to a single module ��s�i�j�scij =�ama�ma−1��, and �ii� the
random expectation for pairs of nodes being in the same
team is small ��s�i�j�stitj� ��ama�2�.

As in the derivation of Eq. �1�, the null model implicit in
Eqs. �2� and �3� is such that one could, in principle, have
multiple connections between an actor and a team. In most
cases this situation would not make sense, so the null model
is only appropriate when ma and ti are much smaller than
�ama, for all a and all i.

IV. MODEL BIPARTITE NETWORKS WITH MODULAR
STRUCTURE

Ensembles of random networks with prescribed modular
structure �4� enable one to assess algorithm’s performance
quantitatively, and thus to compare the performance of dif-
ferent algorithms. Here, we introduce an ensemble of ran-
dom bipartite networks with prescribed modular structure
�Fig. 1�.

We start by dividing the actors into NM of modules; each
module s comprises Ss nodes. For clarity, we use different
“colors” for different modules. The network is then created
assuming that actors that belong to the same module have a
higher probability of being together in a team than actors that
belong to different modules �49�. Specifically, we proceed by
creating NT teams as follows:

�i� Create team a.
�ii� Select the number ma of actors in the team.
�iii� Select the color ca of the team, that is, the module

that will contribute, in principle, the most actors to the team.
�iv� For each spot in the team: �i� with probability p,

select the actor from the pool of actors that have the same
color as the team; �ii� otherwise, select an actor at random
with equal probability. The parameter p, which we call team
homogeneity, thus quantifies how homogeneous a team is. In
the limiting cases, for p=1 all the actors in the team belong
to the same module and modules are perfectly segregated,
whereas for p=0 the color of the teams is irrelevant, actors
are perfectly mixed and the network does not have a modular
structure.

V. RESULTS

We next investigate the performance of different module
identification algorithms in both model networks with pre-
defined modular structure, and in a simple real network that
shows some interesting features.

We consider three approaches for the identification of
modules in bipartite networks. First, we consider the un-
weighted projection �UWP� approach. Within this approach,
we start by building the projection of the bipartite network
into the actors space. Then we consider the projection as a
regular unipartite network and use the modularity given in
Eq. �1�.

Next, we consider the weighted projection �WP� ap-
proach. Within this approach, we start by building the
weighted projection of the bipartite network. In the weighted
projection, actors are connected if they are together in one or
more teams, and the weight wij of the link indicates the num-
ber of teams in which the two actors are together �thus, wij
=cij�. We then use the simplest generalization to weighted
networks of the modularity in Eq. �1�

MW�P� = �
s=1

NM �ws
int

W
− �ws

all

2W
�2	 , �6�

where W=�i�jwij, ws
int is the sum of the weights of the links

within module s, and ws
all=�i�s� jwij.

Finally, we consider the bipartite �B� approach. Within
this approach, we consider the whole bipartite network and
use the modularity introduced in Eq. �5�.

In all cases, we maximize the modularity using simulated
annealing �41�. Several alternatives have been suggested to
maximize the modularity including greedy search �42�, ex-
tremal optimization �43�, and spectral methods �44,45�. In
general, there is a trade-off between accuracy and execution
time, with simulated annealing being the most accurate
method �15�, but at present too slow to deal properly with

A1

A2

A3

A4
A5

A6
A7

A8

A9

A10

A11

A12

A13
A14 A15

A16

A17

A18

A19

A20

A21

A22

A23

A24A25

A26

A27

A28

A29

A30

A31

A32

A33

A34

A35

A36

A37A38

A39

A40

A41

A42
A43 A44

A45
A46

A47

A48

A49

A50

A51

A52

A53

A54

A55

A56

A57

A58

A59

A60

A61

A62

A63

A64

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32B33

B34

B35

B36

B37

B38

B39

B40

B41

B42

B43

B44

B45

B46

B47

B48

B49

B50 B51

B52

B53

B54

B55

B56

B57

B58

B59

B60

B61

B62

B63

B64
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23
A24

A25

A26

A27

A28

A29

A30

A31

A32

A33

A34

A35

A36

A37

A38 A39

A40

A41

A42

A43

A44

A45

A46

A47

A48

A49

A50

A51

A52

A53

A54

A55

A56

A57

A58

A59

A60

A61

A62

A63

A64

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32
B33

B34

B35

B36

B37

B38

B39

B40

B41

B42

B43

B44

B45

B46

B47

B48

B49

B50

B51

B52

B53

B54

B55

B56

B57

B58

B59

B60

B61

B62

B63

B64

Team 1 Team 2 Team 3 Team 4

11 12 13 14 153 4 5 6 7 8 101 2 9

(b)

(a)

FIG. 1. �Color online� Model random bipartite networks with
modular structure. �a� Nodes are divided into two sets, actors
�circles� and teams �rectangles�. Each color represents a different
module in the actors’ set, and teams of a given color are more likely
to contain actors of their color �see text�. �b� Two sample networks
with NM =4 modules, with 16 actors �circles� each, and NT=64
teams �diamonds�, with m=7 actors each. The network on the left-
hand side has a strong modular structure, p=0.9, while the modular
structure is less well defined on the right-hand side, p=0.5 �see text
for the definition of p�.
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networks comprising hundreds of thousands or millions of
nodes.

A. Model bipartite networks

We consider the performance of the different module
identification approaches when applied to the model bipartite
networks described above. We assess the performance of an
algorithm by comparing the partitions it returns to the pre-
defined group structure. Specifically, we use the mutual in-
formation IAB �15� between partitions A and B to quantify the
performance of the algorithms

IAB =

− 2�
i=1

NM
A

�
j=1

NM
B

nij
AB log10�nij

ABS

ni
Anj

B�
�
i=1

NM
A

ni
A log10�ni

A

S
� + �

j=1

NM
B

nj
B log10�nj

B

S
�

. �7�

Here, S is the total number of nodes in the network, NM
A is the

number of modules in partition A, ni
A is the number of nodes

in module i of partition A, and nij
AB is the number of nodes

that are in module i of partition A and in module j of parti-
tion B. The mutual information between partitions A and B is
1 if both partitions are identical, and 0 if they are uncorre-
lated.

In the simplest version of the model all modules have the
same number of nodes, all teams have the same size, and the
color of each team is set assuming equal probability for each
color. Unless otherwise stated, we build networks with NM
=4 modules, each of them comprising 32 actors, and NT
=128 teams of size m=14.

1. Team homogeneity

We first investigate how team homogeneity p affects al-
gorithm performance. For p=1, all the actors in a team be-
long to the same module, and any reasonable algorithm must
perfectly identify the modular structure of the network; thus
I=1. Conversely, for p=0, actors are perfectly mixed in
teams, and all algorithms will return random partitions due to
small fluctuations �38�; thus I=0. Any p�0 will provide a
signal that an algorithm can, in principle, extract.

As shown in Fig. 2�a�, the UWP approach performs sys-
tematically and significantly worse than the weighted projec-
tion and the bipartite algorithms for all values of p. For the
choice of parameters described above, the last two algo-
rithms start to be able to identify the modular structure of the
network for p�0.35. For p�0.5, one already finds I�0.9.
The WP and the B approaches yield indistinguishable results.

2. Number of teams and average team size

Team homogeneity is not the only parameter affecting
algorithm performance. For example, the number of teams
NT in the network critically affects the amount of information
available to an algorithm. Interestingly, the number of teams
affects in different ways the UWP approach on the one hand,
and the WP and B approaches on the other; Fig. 2�b�. For the
WP and B algorithms, the larger NT, the larger the amount of
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FIG. 2. �Color online� Algorithm performance as a function of
�a� team homogeneity p �simulation parameters, NM =4, Ss=32 for
all modules�; �b� number of teams NT �simulation parameters, NM

=4, Ss=32 for all modules�; �c� module size homogeneity h �simu-
lation parameters NM =6, 132 nodes�; and �d� mean team size �
�simulation parameters, NM =4, Ss=32 for all modules�. Error bars
indicate the standard error.
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information and, therefore, the easier the problem becomes.
Indeed, even for very small values of p, the signal-to-noise
ratio can become significantly greater than 1 if NT is large
enough. On the contrary, as the number of teams increases
the UWP becomes denser and denser and eventually be-
comes a fully connected graph, from which the algorithm
cannot extract any useful information. Once more, the per-
formance of the WP and the B approaches are indistinguish-
able.

3. Module size heterogeneity

In real networks, modules will have �sometimes dramati-
cally� different sizes �46�. Given the sizes of the modules in
a network, and assuming that they are ordered so that S1
�S2� ¯ �SNM

, we define h as the ratio of sizes between
consecutive modules �with integer rounding�

h =
Si+1

Si
. �8�

Additionally, we select the color of the teams with probabili-
ties proportional to the size of the corresponding module, so
that all actors participate, on average, in the same number of
teams.

As we show in Fig. 2�c�, we again observe that the WP
and the B approach perform similarly, and clearly outperform
the UWP approach for all values of h.

4. Team size distribution

All the results so far suggest that the WP approach and the
B approach yield results that are indistinguishable from each
other. We know, however, that differences do exist between
both. The distribution of team sizes, in particular, is taken
into account in the B approach but disregarded in the WP
approach, and “teams” with m=1 are totally disregarded in
projection-based approaches, but not in the B approach.

We thus investigate what is the effect of the team size
distribution on the performance of the algorithms. Instead of
considering that all teams have the same size m, we now
consider a distribution p�m� of team sizes. In particular, we
consider a �displaced� geometric distribution

p�m� =
1

�
�1 −

1

�
�m−1

, m � 1, �9�

which is the discrete counterpart of the exponential distribu-
tion. The distribution has mean 
m�=�.

As we show in Fig. 2�d�, some small differences seem to
appear between the WP approach and the B approach, al-
though it is difficult to establish conclusively if these differ-
ences are significant or not.

In light of this, we investigate in more depth the relation-
ship between the bipartite modularity in Eq. �5� and the
weighted extension of the unipartite modularity in Eq. �1�.
As we show in the Appendix, the bipartite modularity actu-
ally reduces to the weighted unipartite modularity �up to an
irrelevant additive constant� when all teams in the bipartite
network have the same size.

This observation explains why the WP and the B approach
differ when teams have unequal sizes �50�. Although our

results suggest that each approach outperforms the other in
certain cases, we believe that Eq. �5� is, in general, preferable
because it explicitly takes into account the distribution of
team sizes, while the weighted projection does not.

B. Southern women dataset

During the 1930s, ethnographers Davis, Stubbs Davis, St.
Clair Drake, Gardner, and Gardner collected data on social
stratification in the town of Natchez, Mississippi �32,47�.
Part of their field work consisted in collecting data on wom-
en’s attendance to social events in the town. The researchers
later analyzed the resulting women-event bipartite network
in light of other social and ethnographic variables. Since
then, the dataset has become a de facto standard for discuss-
ing bipartite networks in the social sciences �32�.

Here we analyze the modules of both women and events.
We start by considering the unweighted projection of the
network in the women’s space �two women are connected if
they co-attended at least one event�, and in the events’ space
�two events are connected if at least one woman was in both
events�. As we show in Fig. 3�a�, the unweighted projection
does not capture the true modular structure of the network.
The failure of this approach is due to the fact that the pro-
jections are very dense. For example, some central events
were attended by most women and thus most pairs of women
are connected in the projection.

As we show in Fig. 3�b�, the weighted projection ap-
proach and the bipartite approach yield the exact same re-
sults, which do capture the two-module structure of the net-
work. Except for one woman, the partition coincides with the
original subjective partition proposed by the ethnographers
who collected the data, and is in perfect agreement with
some of the supervised algorithms reviewed in Ref. �32�.

VI. MODULES IN DIRECTED NETWORKS

Another important class of networks for which no satis-
factory module identification algorithm has so far been pro-
posed is directed unipartite networks. In order to tackle this
class of networks, we note that directed networks can be
conveniently represented as bipartite networks where each
node i is represented by two nodes Ai and Bi. A directed link
from i to j would be represented in the bipartite network as
an edge connecting Ai to Bj.

Consider, for example, a network in which nodes are
companies and links represent investments of one company
into another. By considering each company as two different
objects, one that makes investments and one that receives
investments, the directed network can be represented as an
undirected bipartite network. Modules in the set of objects
that make investments correspond to groups of companies
that invest in the same set of companies, that is, groups of
companies with a similar investing strategy.

The most widely used approach to identify communities
in directed networks is to simply disregard the directionality
of the links and identify modules using a method suitable for
undirected unipartite networks. This method might work in
some situations, but will fail when different modules are de-
fined based on incoming and outgoing links.
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Consider, for instance, the simple model network depicted
in Figs. 4�a� and 4�b�. According to the outgoing links of the
nodes this network has two modules: nodes 1–12 and nodes
13–24. According to the incoming links of the nodes the
network has also two modules, but they are different: nodes
1–6 and 13–18 on the one hand, and nodes 7–12 and 19–24
on the other. As we show in Fig. 4�c�, a layout of the corre-
sponding bipartite network already makes clear the modular
structure of the network, and any of the approaches described

above �UWP, WP, and B� is able to identify the in-modules
and out-modules correctly; Fig. 4�d�. Disregarding the direc-
tion of the links, however, results in modules that fail to
capture the modular structure of the network; Fig. 4�e�.

VII. DISCUSSION

In this work, we have focused on approaches that aim at
identifying modules in each of the two sets of nodes in the
bipartite network independently. There are two main reasons
for this choice. First, methodologically our choice enables
comparison with projection-based algorithms, which, by
definition, cannot identify modules of actors and teams si-
multaneously. Second, in most situations it is reasonable to
assume that two actors belong to the same module if they
coparticipate in many teams, regardless of whether the teams
themselves belong to the same module or not. An alternative
approach, however, would be to group nodes in both sets at
the same time.
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FIG. 3. �Color online� Modular structure of the Southern women
dataset �32,47�. Circles represent women and diamonds represent
social events. A woman and an event are connected if the woman
attended the event. �a� Modular structure as obtained from the un-
weighted projection �UWP� approach. �b� Modular structure as ob-
tained from the weighted projection �WP� approach and the bipar-
tite �B� approach. The UWP approach fails to capture the real
modular structure of the network.

p
i

p
i

p
o

p
o

1−12

13−24

Out

In

13−18
1−6 7−12

19−24

(b) (c)

(d) (e)

(a)

FIG. 4. �Color online� Application of the bipartite approach to
the identification of modules in directed networks. �a�, �b� A di-
rected model network. A link from node i to node j is established
according to the probabilities in the matrix in �a�. For example,
there is a probability pi that there is a link from node 1 to node 13.
In particular, we use pi=0.45� po=0.05 to generate the directed
network in �b�. �c� Bipartite representation of the network in �b�.
Each node i in �b� is represented by two nodes here, a circle Ai and
a square Bi. All links in the bipartite network run between circles
and diamonds, and a link between Ai and Bj corresponds to a link
from i to j in the directed network. �d� Modules identified in the
bipartite network. �e� Modules identified from the directed network
disregarding link direction. Here, we use the same color for Ai and
Bi, since this approach does not make distinctions between incom-
ing and outgoing links.
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Another interesting observation relates to the optimization
algorithm used to maximize the modularity. Although we
have chosen to use simulated annealing to obtain the best
possible accuracy �15,36,37�, one can trivially use the modu-
larity introduced in Eq. �5� with faster algorithms such as
greedy search �42� or extremal optimization �43�.

Interestingly, one can also use the spectral methods intro-
duced in �44,45�. Indeed, just as the unipartite modularity
M�P�, the bipartite modularity MB�P� can be rewritten in
matrix form as

MB�P� = gTBg, �10�

where gis=1 if node i belongs to module s and 0 otherwise,
and the elements of the modularity matrix B are defined as

Bij = �
cij

�
a

ma�ma − 1�
−

titj

��
a

ma�2 ,
i � j

0, i = j .
� �11�

Even more importantly, by sampling all local maxima of
the modularity in Eq. �5� one can study, not only the most
modular partition of the network, but the hierarchical struc-
ture of nested modules and submodules �34� within each set
of nodes in the bipartite network. This is particularly relevant
taking into account that the most modular partition of a net-
work may, in some cases, not represent the most “relevant”
division of its nodes �33,34�.

Finally, a few words are necessary on the comparison be-
tween the different approaches. First, we have shown that the
�so far “default”� unweighted projection approach is not re-
liable and can lead, in most situations, to incorrect results.
Therefore, we believe that this approach should not be used.
As for the weighted projection approach and the bipartite
approach, we have shown that their performance is very
similar, and that they are actually equivalent when all teams
in the bipartite network have the same size. We have also
pointed out, however, that they can and do give noticeably
different results when team sizes are not uniform. Given this,
we believe that the bipartite approach has a more straightfor-
ward interpretation and would be preferable in cases in
which the modular structure of the network is unknown.

ACKNOWLEDGMENTS

The authors thank R. D. Malmgren, E. N. Sawardecker, S.
M. D. Seaver, D. B. Stouffer, M. J. Stringer, and especially
M. E. J. Newman and E. A. Leicht for useful comments and
suggestions. One of the authors �L.A.N.A.� gratefully ac-

knowledges the support of a NIH/NIGMS K-25 grant, NSF
Grant No. SBE 0624318, the J. S. McDonnell Foundation,
and the W. M. Keck Foundation.

APPENDIX: WEIGHTED UNIPARTITE MODULARITY
AND BIPARTITE MODULARITY FOR BIPARTITE

NETWORKS WITH UNIFORM TEAMS

Next, we demonstrate that, when all teams in a bipartite
network have the same size m, the bipartite modularity is
equivalent to the modularity of the weighted projection.

We consider the usual weighted projection, in which each
pair of nodes i� j is connected by a link whose weight wij
equals the number of times that i and j are together in a
team; using our previous notation wij =cij. No self-links are
included in the projection.

In this projection, and when all teams have the same num-
ber of actors ma�m, the constant team-size factors in Eq. �5�
become

�
a

ma�ma − 1� = NTm�m − 1� = 2W , �A1�

��
a

ma�2
= � 2W

m − 1
�2

, �A2�

where, as before, W=�i�jwij.
Each time an actor is in a team, the total weight of the

links in the projected network increases by �m−1�. Using
this and the identities above, we obtain

�
i�j�s

cij

�
a

ma�ma − 1�
=

ws
int

W
, �A3�

�
i�j�s

titj

��
a

ma�2 = �
i�s

�m − 1�ti

2W �
j�s,j�i

�m − 1�tj

2W

= �ws
all

2W
�2

− �
i�s

� �m − 1�ti

2W
�2

. �A4�

Once the summation over modules is carried out, the last
term is simply a constant independent of the partition, and is
therefore irrelevant. Thus, up to an irrelevant constant, when
all teams in a bipartite network have the same size, the bi-
partite modularity in Eq. �5� is equivalent to the weighted
modularity in Eq. �6�.
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