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From 1 Õf noise to multifractal cascades in heartbeat dynamics
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We explore the degree to which concepts developed in statistical physics can be usefully applied to
physiological signals. We illustrate the problems related to physiologic signal analysis with
representative examples of human heartbeat dynamics under healthy and pathologic conditions. We
first review recent progress based on two analysis methods, power spectrum and detrended
fluctuation analysis, used to quantify long-range power-law correlations in noisy heartbeat
fluctuations. The finding of power-law correlations indicates presence of scale-invariant,fractal
structures in the human heartbeat. These fractal structures are represented by self-affine cascades of
beat-to-beat fluctuations revealed by wavelet decomposition at different time scales. We then
describe very recent work that quantifiesmultifractal features in these cascades, and the discovery
that the multifractal structure of healthy dynamics is lost with congestive heart failure. The analytic
tools we discuss may be used on a wide range of physiologic signals. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1395631#
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Physiologic signals are generated by complex self
regulating systems that process inputs with a broad range
of characteristics.1–3 Many physiological time series are
extremely inhomogeneous and nonstationary, fluctuating
in an irregular and complex manner. An important ques-
tion is whether the ‘‘heterogeneous’’ structure of physi-
ologic time series arises trivially from external and intrin-
sic perturbations which push the system away from a
homeostatic set point. An alternative hypothesis is that
the fluctuations are, at least in part, due to the underlying
dynamics of the system. The key problem is how to de
compose subtle fluctuations„due to intrinsic physiologic
control… from other nonstationary trends associated with
external stimuli. Until recently, the analysis of the fractal
properties of such fluctuations has been restricted to
second-order linear characteristics such as the powe
spectrum and the two-point autocorrelation function.
These analyses reveal that thefractal behavior of healthy,

a!Also at Harvard Medical School, Beth Israel Deaconess Medical Cen
Boston, Massachusetts 02215.
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free-running physiological systems is often characterized
by 1Õf -like scaling of the power spectra.4–8 Monofractal
signals, however, are homogeneous and have ‘‘linear’
properties. Many physiologic time series—such as heart-
beat interval sequences—are in fact inhomogeneous, sug
gesting that different parts of the signal have different
scaling properties. In addition, there is evidence that
heartbeat dynamics exhibits nonlinear properties.9–15

Such features are often associated with multifractal be-
havior. Up to now, robust demonstration of multifractal-
ity for nonstationary time series has been hampered by
problems related to a drastic bias in the estimate of the
singularity spectrum due to diverging negative moments.
Moreover, the classical approaches based on the box
counting technique and structure function formalism fail
when a fractal function is composed of a multifractal sin-
gular part embedded in regular polynomial behavior.16

By means of a wavelet-based multifractal formalism, we
show that healthy human heartbeat dynamics exhibits
even higher complexity „than previously expected from
the finding of fractal 1Õf scaling… which is characterized
by a broad multifractal spectrum.17
r,
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I. INTRODUCTION

In recent years the study of the statistical properties
heartbeat interval sequences has attracted the attention
searchers from different fields.18–22Analysis has focused ex
tensively on interbeat interval variability as an importa
quantity to help elucidate possibly nonhomeostatic phy
ologic variability because~i! the heart rate is under direc
neoroautonomic control,~ii ! interbeat interval variability is
readily measured by noninvasive means, and~iii ! analysis of
these heart rate dynamics may provide important pract
diagnostic and prognostic information. Figure 1 shows a c
diac interbeat time series—the output of a spatially and te
porally integrated neuroautonomic control system. The ti
series shows ‘‘erratic’’ fluctuations and ‘‘patchiness.’’ The
fluctuations are usually ignored in conventional stud
which focus on averaged quantities. In fact, these fluct
tions are often labeled as ‘‘noise’’ to distinguish them fro
the true ‘‘signal’’ of interest. Generally, in the convention
approach it is assumed that there is no meaningful struc
in apparent noise and, therefore, one does not expect to
any understanding about the underlying system through
study of these fluctuations. However, by adapting and
tending methods developed in modern statistical physics
nonlinear dynamics, we find that the physiologic fluctuatio
shown in Fig. 1 exhibit an unexpected hiddenscaling
structure.6,13,17,23–25Furthermore, the dynamical patterns
these fluctuations and the associated scaling featureschange
with pathological perturbations. These findings raise the p
sibility that understanding the origin of such temporal stru
tures and their alterations with disease~a! may elucidate cer-
tain basic aspects of heart rate control mechanisms, and~b!
may have potential for clinical monitoring.

II. 1Õf FLUCTUATIONS IN HEARTBEAT DYNAMICS

A quantity widely used to measure correlations in a tim
series is the power spectrum, which measures the rela

FIG. 1. Consecutive heartbeat intervals are plotted versus beat number
h recorded from the same healthy subject during:~a! wake period: 12:00
p.m. to 6:00 p.m. and~b! sleep period: 12:00 a.m. to 6:00 a.m.~Note that
there are fewer interbeat intervals during sleep due to the larger avera
the interbeat intervals, i.e., slower heart rate.!
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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frequency content of a signal. Fourier and related pow
spectrum analysis have proved particularly useful for rec
nizing the existence and role of characteristic frequenc
~time scales! in cardiac dynamics. The analysis of heartbe
fluctuations focused initially on short time oscillations ass
ciated with breathing and blood pressure as well as o
control.20,21 Studies of longer heartbeat records revea
1/f -like scale-free behavior.4,5 A power spectrum calculation
assumes that the signal studied is stationary,26,27 and when
applied to nonstationary time series can lead to mislead
results. However, time series of beat-to-beat~RR! heart rate
intervals obtained from digitized electrocardiograms a
typically nonstationary and fluctuate in an irregular mann
in healthy subjects, even at rest@Fig. 1~b!#.28,29 Because of
this property, researchers were faced with the task to c
sider only portions of the data and to test these portions
stationarity before performing power spectrum analysis.

To illustrate the limitations of the power spectrum ana
sis for nonstationary time series, we consider 6 h reco
~n'104 beats! of interbeat intervals for a healthy subje
during sleep and wake activity. We show that there isno true
1/f power spectrum for the interbeat intervals in the re
heart. Instead, we find that the power spectrum of the in

FIG. 2. ~Top! Power spectrum from 6 h records of interbeat intervals for
healthy subject during day and night.~Bottom! We plot the local exponentb
calculated from the power spectrum for six healthy subjects. The local v
of b shows a persistent drift, sono true scaling exists. This is not surprising,
having in mind the nonstationarity of the signals. The horizontal line sho
the value of the exponent obtained from a least square fit to the data.
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643Chaos, Vol. 11, No. 3, 2001 Noise to cascades to dynamics
beat intervals has different regimes with different scaling
havior and that the rounded crossover between the diffe
regimes is the reason why it seems, to first approximation
scale as 1/f ~Fig. 2!.

Recent analyses of very long time series~up to 24 h:n
'105 beats! show that under healthy conditions, interbe
interval incrementsI (n) exhibit power-law anticorrelations.6

Since I (n) is stationary, we can apply standard spect
analysis techniques~Fig. 3! and we show thattrue scaling
does exist.

The fact that the log–log plot of the power spectru
SI( f ) vs f is linear implies

SI~ f !; f 2b. ~2.1!

The exponentb is related to the mean fluctuation fun
tion exponenta by b52a21 ~Refs. 30 and 31! and can
serve as an indicator of the presence and type of correlati
~i! If b50, there is no correlation in the time seriesI (n)
~‘‘white noise’’!. ~ii ! If 0 ,b,1, thenI (n) is correlated such
that positive values ofI are likely to be close~in time! to
each other, and the same is true for negativeI values.~iii ! If

FIG. 3. ~Top! Power spectrum of the interbeat interval increments from
record for the same healthy subject as in Fig. 2. Error bars are calculat
the standard deviation of the power spectrum values for frequencies w
the binning interval.~Bottom! The local exponentb I for the power spectrum
of the increments for the same six healthy subjects as in Fig. 2. Note tha
exponentb I fluctuates around an average value close to one, sotrue scaling
does exist. The horizontal line shows the value ofb I obtained from a least
square fit. Note, however, that the difference between wake and sleep
namics cannot be observed from the power spectra.
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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21,b,0, thenI (n) is also correlated. However, the value
of I are organized such that positive and negative values
more likely to alternate in time~‘‘anticorrelation’’!.30

For interbeat interval increments from records of heal
subjects we obtainb.21, suggestingnontrivial power-law
long-range correlations in the heartbeat. Furthermore, the
ticorrelation properties ofI indicated by the negativeb are
consistent with a nonlinear feedback system that ‘‘kicks’’ t
heart rate away from extremes.32,33 This tendency, however
does not only operate locally on a beat-to-beat basis, but o
a wide range of time scales up to thousands of beats~Fig. 3!.
The emergence of such scale-invariant properties in
seemingly ‘‘noisy’’ heartbeat fluctuations is believed to be
result of highly complex, nonlinear mechanisms of phy
ologic control.31,36

Extracting increments from a time series is only a fi
step in effectively treating problems related to nonstation
ties. Note that the power spectrum of the increments in
heartbeat intervals~Fig. 3! does notdistinguish between
wake and sleep dynamics. One needs to be better, e.g
taking into account the presence of polynomial trends in
times series. We discuss such an approach in the follow
section.

III. MONOFRACTAL ANALYSIS: LONG-RANGE
ANTICORRELATIONS IN THE HEARTBEAT
FLUCTUATIONS

Recently the detrended fluctuation analysis~DFA!
method37 was introduced to detect long-range correlations
physiological fluctuations when these are embedded i
seemingly nonstationary time series. The advantage of
DFA method over conventional methods, such as pow
spectrum analysis, is that it avoids the spurious detection
apparent long-range correlations that are an artifact of n
stationarity related to linear and higher-order polynom
trends in the data. The essence of the DFA method is
follows: the average root-mean-square fluctuation funct
F(n) is obtained after integrating and detrending the da
i.e., subtracting the local polynomial trend in a box of sizen
data points. The power-law relation betweenF(n) and the
number of data pointsn in a box indicates the presence
scaling: the fluctuations can be characterized by a sca
exponenta, a self-similarity parameter, defined asF(n)
;na. The DFA method has been tested on control time
ries of ‘‘built-in’’ long-range correlations with superpositio
of a nonstationary external trend.38 It has also been succes
fully applied to detect long-range correlations in human g
ion channel kinetics, and highly heterogeneous DN
sequences.7,8,37,39–41Of note is a recent independent revie
of fractal fluctuation analysis methods which determined t
DFA was one of the most robust methods.42

It is known that circadian rhythms are associated w
periodic changes in key physiological processes.3,36,44 Typi-
cally the differences in the cardiac dynamics during sle
and wake phase are reflected in the average and stan
deviation of the interbeat intervals.43,44 Such differences can
be systematically observed from plots of the interbeat in
vals recorded from subjects during sleep and wake~Fig. 1!.
In recent studies we have reported on sleep–wake dif
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644 Chaos, Vol. 11, No. 3, 2001 Ivanov et al.
ences in the distributions of the amplitudes of the fluct
tions in the interbeat intervals—a surprising finding indic
ing higher probability for larger amplitudes durin
sleep.13,24,45Next, we ask the question if there are charact
istic differences in the scaling behavior between sleep
wake cardiac dynamics. We hypothesize that sleep and w
changes in cardiac control may occur on all time scales
thus could lead to systematic changes in the scaling pro
ties of the heartbeat dynamics. Elucidating the nature
these sleep–wake rhythms could lead to a better underst
ing of the neuroautonomic mechanisms of cardiac regulat

To answer this question we apply the detrended fluct
tion analysis~DFA! method. We analyze 30 datasets—ea
with 24 h of interbeat intervals—from 18 healthy subjec
and 12 patients with congestive heart failure.46 We analyze
the nocturnal and diurnal fractions of the dataset of e
subject, which correspond to the 6 h~n'22 000 beats! from
midnight to 6:00 a.m. and noon to 6:00 p.m. These peri
incorporate the segments with lowest and highest heart
in the time series, which we and others found to be the b
indirect marker of sleep.43,44 We find that at scales abov
'1 min(n.60) the data during wake hours display lon
range correlations over two decades with average expon
aW'1.05 for the healthy group andaW'1.2 for the heart
failure patients. For the sleep data we find a systematic cr
over at scalen'60 beats followed by a scaling regime e
tending over two decades characterized by a smaller e
nent: aS'0.85 for the healthy andaS'0.95 for the heart
failure group@Figs. 4~a! and 4~c!#. Although the values of the
sleep and wake exponents vary from subject to subject,
find that for all individuals studied, the heartbeat dynam
during sleep are characterized by a smaller exponent.47

This analysis suggests that the observed sleep–w
scaling differences are due to intrinsic changes in the car
control mechanisms for the following reasons:~i! The DFA
method removes the ‘‘trends’’ in the interbeat interval sign
which are due, at least in part, to activity, and quantifies
fluctuations along the trends.~ii ! Responses to externa
stimuli should give rise to a different type of fluctuation
having characteristic time scales, i.e., frequencies relate
the stimuli. However, fluctuations in both diurnal and no
turnal cardiac dynamics exhibit scale-free behavior.~iii ! The
weaker anticorrelated behavior observed for all wake ph
records cannot be simply explained as a superposition
stronger anticorrelated sleep dynamics and random nois
day activity. Such noise would dominate at large scales
should lead to a crossover with an exponent of 1.5. Howe
such crossover behavior is not observed in any of the w
phase datasets~Fig. 4!. Rather, the wake dynamics are typ
cally characterized by a stable scaling regime up ton55
3103 beats.

To test the robustness of our results, we analyze
datasets from six cosmonauts during long-term orbital fli
on the Mir space station under the extreme conditions of z
gravity and high stress activity.48 Each dataset contains con
tinuous periods of 6 h data under both sleep and wake co
ditions. We find that for all cosmonauts the heartbeat inter
series exhibit long-range correlations with scaling expone
consistent with those found for the healthy terrestrial gro
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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aW'1.04 for the wake phase andaS'0.82 for the sleep
phase. The values of these exponents indicate that the
tuations in the interbeat intervals are anticorrelated for
wake phases and even stronger anticorrelated for the s
phase. This sleep-wake scaling difference is observed
only for the group averaged exponents but for each in
vidual cosmonaut dataset@Fig. 4~b!#. Moreover, the scaling
differences are persistent in time, since records of the s
cosmonaut taken on different days~ranging from the 3rd to
the 158th day in orbit!, exhibit a higher degree of anticorre
lation in sleep.

Thus, the larger values for the wake phase scaling ex
nents observed for healthy subjects cannot be a trivial arti
of activity. Furthermore, the larger value of the average wa
exponent for the heart failure group compared to the ot
two groups cannot be attributed to external stimuli eith

FIG. 4. Plots of logF(n) vs logn for 6 h wake~open circles! and sleep
records~filled triangles! of ~a! one typical healthy subject;~b! one cosmo-
naut~during orbital flight!; and~c! one patient with congestive heart failure
Note the systematic lower exponent for the sleep phase~filled triangles!,
indicating stronger anticorrelations.~d! As a control, we reshuffle and inte
grate the interbeat increments from the wake~open squares! and sleep data
~solid squares! of the healthy subject presented in~a!. We find a Brownian
noise scaling over all time scales for both wake and sleep phases wit
exponenta51.5, as one expects for random walk-like fluctuations.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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645Chaos, Vol. 11, No. 3, 2001 Noise to cascades to dynamics
since patients with severe cardiac disease are strongly
stricted in their physical activity. We note, however, that t
average sleep–wake scaling difference remains the s
~'0.2! for all three groups. Such sleep–wake changes in
scaling characteristics may indicate different regimes of
trinsic neuroautonomic regulation of the cardiac dynam
which may ‘‘switch’’ on and off in accordance with circadia
rhythms. A very recent study confirms our finding of low
value for the scaling exponent during sleep and shows
different stages of sleep~e.g., light sleep, deep sleep, rap
eye movement stages! could be associated with different co
relations in the heartbeat fluctuations.49 The findings of
strongeranticorrelations,47 as well as higher probability fo
larger heartbeat fluctuations during sleep,13,24,45are of inter-
est from a physiological viewpoint, since they suggest t
the observed dynamical characteristics in the heartbeat
tuations during sleep and wake phases are related to intr
mechanisms of neuroautonomic control, and support a r
sessment of the sleep as a surprisinglyactive dynamical
state. The finding of scaling features in the human heartb
and their change with disease or sleep–wake transition h
motivated new modeling approaches which may lead to
ter understanding the underlying control mechanisms
heartrate regulation.33

Before concluding this section we note that rece
work34 provides evidence of surprising complexity present
the temporal organization of the heterogeneities~e.g., trends!
in human heartbeat dynamics. Trends in the interbeat inte
signal are traditionally associated with external stimuli.
probe the temporal organization of such heterogeneities
introduce a segmentation algorithm35 and find that the
lengths of segments with different local mean heart ra
follow a power-law distribution. This scale-invariant stru
ture is not a simple consequence of the long-range corr
tions present in the heartbeat fluctuations discussed in
section. These new findings suggest that relevant physiol
cal information may be hidden in the heterogeneities of
heartbeat time series, the understanding of which remain
open question.

IV. SELF-SIMILAR CASCADES IN THE HEARTBEAT
FLUCTUATIONS

Many simple systems in nature have correlation fu
tions that decay with time in an exponential way. For s
tems comprised of many interacting subsystems, physic
discovered that such exponential decays typically do not
cur. Rather, correlation functions were found to decay wit
power-law form. The implication of this discovery is that
complex systems, there is no single characteristic time.50–52

If correlations decay with a power-law form, we say t
system is ‘‘scale-free’’ because there is no characteristic s
associated with a power law. Since at large time scale
power law is always larger than an exponential functio
correlations described by power laws are termed ‘‘lon
range’’ correlations—they are of longer range than expon
tially decaying correlations.

The findings of long-range power-law correlations23,47

and the recently reported scaling in the distributions of he
beat fluctuations13,45~i.e., ‘‘data collapse’’ of the distributions
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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for different time scales! suggest the absence of a charact
istic scale and indicate that the underlying dynamical mec
nisms regulating the healthy heartbeat have statistical p
erties which aresimilar on different time scales. Suc
statistical self-similarity is an important characteristic
fractal objects.53 However, how can this purported fracta
structure be ‘‘visualized’’ in the seemingly erratic and noi
heartbeat fluctuations? The wavelet decomposition of b
to-beat heart rate signals can be used to provide a vi
representation of this fractal structure~Fig. 5!. The brighter
colors indicate larger values of the wavelet amplitudes~cor-
responding to large heartbeat fluctuations! and white tracks
represent the wavelet transform maxima lines. The struc
of these maxima lines shows the evolution of the heartb
fluctuations with scale and time. The wavelet analysis p
formed with the second derivative of the Gaussian~the
Mexican hat! as an analyzing wavelet uncovers a hierarchi
scale invariance@Fig. 5 ~top panel!#, which is characterized
by the stability of the scaling form observed for the distrib
tions and the power-law correlations.13,23,47The plots reveal
a self-affine cascade formed by the maxima lines—a ma
fication of the central portion of the top panel shows simi
branching patterns@Fig. 5 ~lower panel!#. Such fractal cas-

FIG. 5. ~Color online! Color-coded wavelet analysis of a heartbeat interv
signal. Thex-axis represents time~'1700 beats! and they-axis indicates the
scale of the wavelet used~a51,2,...,80; i.e.,' from 5 to 5 min! with large
scales at the top. This wavelet decomposition reveals a self-similar fra
structure in the healthy cardiac dynamics—a magnification of the cen
portion of the top panel with 200 beats on thex-axis and wavelet scalea
51,2,...,20 on they-axis shows similar branching patterns~lower panel!.
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646 Chaos, Vol. 11, No. 3, 2001 Ivanov et al.
cade results from the interaction of many nonlinea
coupled physiological components, operating on differ
scales~polynomial trends due to daily activity are filtere
out!.

Thus the wavelet transform, with its ability to remov
local trends and to extract interbeat variations on differ
time scales, enables us to identify fractal patterns~arches! in
the heartbeat fluctuations even when the signals change
result of background interference. Analysis of data fro
pathologic conditions~e.g., sleep apnea! show a breakdown
of these patterns.24 Fractal characteristics of cardiac dynam
ics and other biological signals can be usefully studied w
the generalized multifractal formalism based on the wav
transform modulus maxima method which we discuss in
next section.

V. MULTIFRACTALITY: NONSTATIONARITY IN LOCAL
SCALING

Monofractal signals are homogeneous in the sense
they have the same scaling properties, characterized loc
by a single singularity exponenth0 , throughout the entire
signal.52–57Therefore monofractal signals can be indexed
a singleglobal exponent—the Hurst exponentH[h0 ~Ref.
58!—which suggests that they arestationaryfrom viewpoint
of their local scaling properties. On the other hand, mu
fractal signals, can be decomposed into many subse
possibly infinitely many—characterized by differentlocal
Hurst exponentsh, which quantify the local singular behav

FIG. 6. ~Color! Local Hurst exponentsh for a multifractal signal~top panel!
and the decomposition of this signal into subsets~subsequent panels! with
each local Hurst exponent indicated by the color and each fractal dimen
indicated by the density of vertical bars. Thex-axis represents time and th
vertical bars~y-axis! indicate local Hurst exponents.
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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ior and thus relate to the local scaling of the time series~Fig.
6!. Thus multifractal signals require many exponents to fu
characterize their scaling properties53,55,57 and are intrinsi-
cally more complex, andinhomogeneous, than monofractals.

The statistical properties of the different subsets char
terized by these different exponentsh can be quantified by
the functionD(h), whereD(h0) is the fractal dimension of
the subset of the time series characterized by the local H
exponenth0 .53,55,57,59–61Thus, the multifractal approach fo
signals, a concept introduced in the context of multiaffi
functions,62,63 has the potential to describe a wide class
signals that are more complex then those characterized
single fractal dimension~such as classical 1/f noise!.

In a recent study, we establish the relevance of the m

on

FIG. 7. ~Color! ~a! Consecutive heartbeat intervals measured in seconds
plotted versus beat number from approximately 3 h record of a representa
tive healthy subject. The time series exhibits very irregular and nonstat
ary behavior.~b! The top panel displays in color the local Hurst exponen
calculated for the same 3 h record shown in~a!. The other two panels
represent two subsets of the heartbeat interval time series in~a! each with a
local Hurst exponent~indicated by the color! and with a different fractal
dimension~indicated by the density of the vertical bars!. ~c! The panel
displays in color the local Hurst exponents calculated for amonofractal
signal—fractional Brownian motion withH50.6. The homogeneity of the
signal is represented by the nearly monochromatic appearance of the s
which indicates that the local Hurst exponenth is the same throughout the
signal and identical to the global Hurst exponentH.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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tifractal formalism for the description of a physiologic
signal—the human heartbeat.17 The motivation for our work
is not merely looking for yet another example of multifra
tality, this time in the biological sciences. In fact, if we co
sider the neuroautonomic control mechanisms respons
for the generation of heartbeats, it is natural to expect
need for multifractal concepts for their description, since
heartbeats are a result of the interaction of many physiol
cal components operating on different time scales. These
teractions are nonlinear and self-regulating~through feed-
back control!, leading to thenonlinear character of the
output signal and to the heterogeneous features of hear
time series.

In contrast, the assumption of heartbeat mon
fractality—which has been the scope of studies in the field
far—is unrealistic because the monofractal hypothesis
sumes that the scaling properties of the signal are the s
throughout time, and are characterized by the same l
Hurst exponenth @Fig. 7~c!#. However, inspection of heart
beat signals shows them to be heterogeneous and sug
they might require more exponents for their descriptio
Since the power spectrum and the correlation analysis~DFA
method! can measure onlyone exponent characterizing
given signal, these methods are more appropriate for
study of monofractal signals. Moreover, the power spectr
and the correlation analysis reflect only the linear charac
istics, while the heartbeat dynamics exhibits nonlinear pr
erties. Thus the multifractal analysis may reveal new inf
mation on the nature of the nonlinearity encoded in
Fourier phases~see Fig. 12 later in this work!.

The first problem, therefore, is to extract the local va
of h. To this end we use methods derived from wave
theory.64 The properties of the wavelet transform ma
wavelet methods attractive for the analysis of complex n
stationary time series such as one encounters in physiolo13

In particular, wavelets can remove polynomial trends t
could lead box-counting techniques to fail to quantify t
local scaling of the signal.65 Additionally, the time-frequency
localization properties of the wavelets makes them part
larly useful for the task of revealing the underlying hierarc
in the cascade of fluctuations~Fig. 5! that governs the tem
poral distribution of the local Hurst exponents. Hence,
wavelet transform enables a reliable multifractal analysi65

As the analyzing wavelet, we use derivatives of the Gaus
function, which allows us to estimate the singular behav
and the corresponding exponenth at a given location in the
time series. The higher the ordern of the derivative, the
higher the order of the polynomial trends removed and
better the detection of the temporal structure of the lo
scaling exponents in the signal.

The concept of multifractality is exemplified in Figs
7~a! and 7~b! for a heartbeat intervals record from a healt
subject. The heterogeneity of the healthy heartbeat is re
sented by the broad range of local Hurst exponentsh ~colors!
present and the complex temporal organization of the dif
ent exponents. The middle and bottom panels illustrate
different fractal structure of two subsets of the time ser
characterized by different local Hurst exponents. The va
of the local Hurst exponent for each subset is represe
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with a shade of green and red, respectively. The two sub
display different temporal structures which can be quantifi
by different fractal dimensionD(h). The healthy signal is
represented by amulticolor plot, reflectingmultifractal be-
havior through the variety of values for the local Hurst e
ponents. In contrast, fractional Brownian motion~a mono-
fractal signal! is essentiallymonochromatic, indicating that
the local Hurst exponenth is the same throughout the sign
@Fig. 7~c!#.

VI. MULTIFRACTALITY IN HEARTBEAT DYNAMICS

We evaluate the local exponenth through the modulus of
the maxima values of the wavelet transform at each poin
the time series using the wavelet transform modulus max
method.65 However, heartbeat time series contain dens
packed,nonisolatedsingularities which unavoidably affec
each other in the time-frequency decomposition. Therefo
rather than evaluating the distribution of the inherently u
stable local singularity exponents~as shown in color in Fig.
7!, we estimate the scaling of an appropriately chosen glo
measure—a partition functionZq(a), which is defined as the
sum of theqth powers of the local maxima of the modulus
the wavelet transform coefficients at scalea. For each scalea
these local maxima values are traced along the maxima l
obtained after the wavelet decomposition of the heartb
signal ~maxima lines appear in bright/white color in Fig. 5!.
As analyzing wavelet we use the third derivative of t
Gaussian function. For small scales, we expect

Zq~a!;at~q!. ~6.1!

For certain values ofq, the exponentst(q) have familiar
meanings. In particular,t~2! is related to the scaling expo
nent of the Fourier power spectra,S( f );1/f b, as b52
1t(2). Forpositiveq, Zq(a) reflects the scaling of the larg
fluctuations and strong singularities, while for negativeq,
Zq(a) reflects the scaling of the small fluctuations and we
singularities.55,57Thus, the scaling exponentst(q) can reveal
different aspects of cardiac dynamics~Fig. 8!. Monofractal
signals display a lineart(q) spectrum,t(q)5qH21, where
H is the global Hurst exponent. For multifractal signals,t(q)
is a nonlinear function:t(q)5qh(q)21, where h(q)
[dt(q)/dq is not constant.

A previous obstacle to the determination of the mu
fractal spectrum of a time series has been the calculatio
the negative moments. Until the application of the wave
modulus maxima method, it was not possible to estim
Zq(a) for q,0. We calculate t(q) for moments q
525,4,...,0,...,5 and scalesa5231.15i , i 50,...,41 from 6 h
records obtained from a healthy subject and a subject w
congestive heart failure. In Figs. 8~a! and 8~b! we display the
calculated values ofZq(a) for scalesa.8. The top curve
corresponds toq525, the middle curve~shown heavy! to
q50 and the bottom curve toq55. The exponentst(q) are
obtained from the slope of theZq(a) curves in the region
16,a,700, thus eliminating the influence of any residu
small scale random noise due to electrocardiogram sig
pre-processing as well as extreme, large-scale fluctuation
the signal. A monofractal signal would correspond to
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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648 Chaos, Vol. 11, No. 3, 2001 Ivanov et al.
straight line fort(q), while for a multifractal signalt(q) is
nonlinear. Note the clear differences between thet(q) curves
for healthy and heart failure records@Fig. 8~c!#. The con-
stantly changing curvature of thet(q) curves for the healthy
records suggests multifractality. In contrast,t(q) is almost

FIG. 8. ~Color online! Scaling of the partition functionZq(a) with scalea
obtained from daytime records consisting of'25 000 beats for~a! a healthy
subject and~b! a subject with congestive heart failure.~c! Multifractal spec-
trum t(q) for the individual records in~a! and ~b!.
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
linear for the congestive heart failure subject, indicati
monofractality.

We analyze both daytime~12:00 to 18:00! and nighttime
~0:00 to 6:00! heartbeat time series records of healthy su
jects, and the daytime records of patients with conges
heart failure. These data were obtained by Holter monitori
Our database includes 18 healthy subjects~13 female and 5
male, with ages between 20 and 50, average 34.3 years!, and
12 congestive heart failure subjects~3 female and 9 male
with ages between 22 and 71, average 60.8 years! in sinus
rhythm.46

FIG. 9. ~Color online! ~a! Multifractal spectrumt(q) of the group averages
for daytime and nighttime records for 18 healthy subjects and for 12 pati
with congestive heart failure. The results show multifractal behavior for
healthy group and distinct change in this behavior for the heart fail
group.~b! Fractal dimensionsD(h) obtained through a Legendre transfor
from the group averagedt(q) spectra of~a!. The shape ofD(h) for the
individual records and for the group average is broad (Dh'0.25), indicat-
ing multifractal behavior. On the other hand,D(h) for the heart failure
group is very narrow (Dh'0.05), indicating loss of multifractality. The
different form ofD(h) for the heart failure group may reflect perturbation
the cardiac neuroautonomic control mechanisms associated with this pa
ogy. Note that, forq52, the heartbeat fluctuations of healthy subjects
characterized byh'0.1, which corresponds toa'1.1 for the interbeat in-
terval series obtained from DFA analysis~Sec. III!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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649Chaos, Vol. 11, No. 3, 2001 Noise to cascades to dynamics
Next, we obtain the fractal dimensionD(h). It is related
to t(q) through a Legendre transform,

D~h!5q
dt~q!

dq
2t~q!. ~6.2!

For all healthy subjects, we find thatt(q) is a nonlinear
function @Figs. 8~c! and 9~a!#, which indicates that the hea
rate of healthy humans is a multifractal signal. Figure 9~b!
shows that for healthy subjects,D(h) has nonzero values fo
a broad range of local Hurst exponentsh. The multifractality
of healthy heartbeat dynamics cannot be explained by ac
ity, as we analyze data from subjects during nocturnal ho
Furthermore, this multifractal behavior cannot be attribu
to sleep-stage transitions, as we find multifractal featu
during daytime hours as well.66 The range of scaling
exponents—0,h,0.3—with nonzero fractal dimensio
D(h), suggests that the fluctuations in the healthy heartb
dynamics exhibit anticorrelated behavior~h5 1

2 corresponds
to uncorrelated behavior whileh. 1

2 corresponds to corre
lated behavior!.

In contrast, we find that heart rate data from subje
with a pathological condition—congestive heart failure
show a clearloss of multifractality@Figs. 9~a! and 9~b!#. For
the heart failure subjects,t(q) is close to linear andD(h) is
nonzero only over a very narrow range of exponentsh indi-
cating monofractal behavior~Fig. 9!.

Our results show that, for healthy subjects, local Hu
exponents in the range 0.07,h,0.17 are associated wit
fractal dimensions close to one. This means that the sub
characterized by these local exponents are statistically do
nant. On the other hand, for the heart failure subjects,
find that the statistically dominant exponents are confined
a narrow range of local Hurst exponents centered ah
'0.22. These results suggest that for heart failure the fl
tuations are less anticorrelated than for healthy dynam
since the dominant scaling exponentsh are closer to1

2. Thus,
our findings support previous reports of long-range antic
relations in healthy heartbeat fluctuations~see caption to Fig.
9!.23

We present color panels with the local Hursth exponent
for six healthy individuals~Fig. 10! and six subjects with
congestive heart failure~Fig. 11!. Each panel represents a 6 h
long record. The color code for these panels is the followi
with increasing value ofh, the spectrum goes from red t
green to blue. A wider range of colors indicates a high
degree of multifractality. For this reason, records fro
healthy individuals should be more polychromatic. On t
other hand, records from heart failure patients should
more monochromatic~with a single color predominating!,
indicating loss of multifractality. In addition, the color spe
trum for the healthy individuals is shifted to the red and
the heart failure patients is shifted to the blue. This is
agreement with the results in Fig. 9 where the peak of
multifractal spectrumD(h) is centered at smaller values ofh
for the healthy group and at larger values ofh for the heart
failure group. These findings may have a potential
diagnosis.67
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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VII. MULTIFRACTALITY AND NONLINEARITY

The multifractality of heart beat time series also enab
us to quantify the greater complexity of the healthy dynam
compared to pathological conditions. Power spectrum
detrended fluctuation analysis define the complexity of he
beat dynamics through its scale-free behavior, identifyin
singlescaling exponent as an index of healthy or patholo
behavior. Hence, the power spectrum is not able to quan
the greater level of complexity of the healthy dynamics,
flected in the heterogeneity of the signal. On the other ha
the multifractal analysis reveals this new level of complex
by the broad range of exponents necessary to characte
the healthy dynamics~Fig. 9!. Moreover, the change in shap
of the D(h) curve for the heart failure group may provid
insights into the alteration of the cardiac control mechanis
due to this pathology.

To further study the complexity of the healthy dynamic
we perform two tests with surrogate time series. First,

FIG. 10. ~Color online! Panels obtained from healthy individuals illustratin
how the local Hurst exponenth ~vertical color bars! changes with time
~x-axis!. Each panel represents a 6 hrecord. A broad range of colors indi
cates broad multifractal spectrum.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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650 Chaos, Vol. 11, No. 3, 2001 Ivanov et al.
generate a surrogate time series by shuffling the inter
interval increments of a record from a healthy subject. T
new signal preserves the distribution of interbeat interval
crements but destroys the long-range correlations am
them. Hence, the signal is a simple random walk, which
characterized by a single Hurst exponentH5 1

2 and exhibits
monofractal behavior@Fig. 12~a!#. Second, we generate
surrogate time series by performing a Fourier transform o
record from a healthy subject, preserving the amplitudes
the Fourier transform but randomizing the phases, and t
performing an inverse Fourier transform. This proced
eliminates nonlinearities, preserving only the linear featu
of the original time series. The new surrogate signal has
same1/f behavior in the power spectrum as the origin
heart beat time series; however, it exhibits monofractal
havior @Fig. 12~a!#. We repeat this test on a record of a he
failure subject. In this case, we find a smaller change in
multifractal spectrum@Fig. 12~b!#. The results suggest tha

FIG. 11. ~Color! Panels obtained from subjects with congestive heart fail
illustrating how the local Hurst exponenth ~vertical color bars! changes with
time ~x-axis!. Each panel represents a 6 hrecord. An almost monochromati
appearance indicates narrow multifractal spectrum, i.e., loss of m
fractality.
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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the healthy heartbeat time series contains important ph
correlations canceled in the surrogate signal by the rand
ization of the Fourier phases, and that these correlations
weaker in heart failure subjects. Furthermore, the tests i
cate that the observed multifractality is related to nonlin
features of the healthy heartbeat dynamics. A number of
cent studies have tested for nonlinear and deterministic p
erties in recordings of interbeat intervals.9–11,14,15Our results
suggest an explicit relation between the nonlinear featu
~represented by the Fourier phase interactions! and the mul-
tifractality of healthy cardiac dynamics~Fig. 12!.

e

i-

FIG. 12. ~Color! ~a! The fractal dimensionsD(h) for a 6 hdaytime record
of a healthy subject. After reshuffling and integrating the increments in
interbeat interval time series, so that all correlations are lost but the di
bution is preserved, we obtain monofractal behavior—a very narrow po

like spectrum centered ath[H5
1
2. Such behavior corresponds to a simp

random walk. A different test, in which the 1/f -scaling of the heart bea
signal is preserved but the Fourier phases are randomized~i.e., nonlinearities
are eliminated! leads again to a monofractal spectrum centered ath'0.07,
since the linear correlations were preserved. These tests indicate tha
observed multifractality is related to nonlinear features of the healthy h
beat dynamics rather than to the ordering or the distribution of the inter
intervals in the time series.~b! The fractal dimensionsD(h) for a 6 h
daytime record of a heart failure subject. The narrow multifractal spect
indicates loss of multifractal complexity and reduction of nonlinearities w
pathology.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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VIII. SUMMARY AND OPEN QUESTIONS

The discovery of multifractality in a physiological tim
series and its breakdown with pathology is significant from
number of perspectives.

First, contemporary analysis of heartbeat fluctuatio
and the study of physiological time series in general, h
emphasized two important, but apparently unconnected p
erties:~i! the presence of nonlinearities and~ii ! 1/f -behavior
~monofractality!. The monofractal hypothesis assumes t
the scaling properties of the signal are the same through
Yet the heterogeneous nature of the heartbeat interval
series clearly indicates nonlinear features. The finding o
multifractal mechanism for heart rate control provides a u
fying connection between nonlinear and fractal proper
and, indeed, indicates that they are aspects of a more fu
mental type of mechanism. In particular, we show that b
the multifractal character and the nonlinear properties of
signal are encoded in the Fourier phases~Fig. 12!. The origin
and nature of these Fourier phase interactions is an o
question.

Second, our analysis indicates that the healthy heart
is described by a broad range of scaling exponentsh with a
well-defined set of bounding parameters,hmin andhmax. Fur-
thermore, certain exponents appear to be ‘‘forbidden’’~h
,hmin andh.hmax! and the exponents present occur with
given structure characterized by the functionD(h).

Third, our findings may lead to new diagnostic applic
tions. Further detailed studies on a larger number of data
are needed to establish the advantages of given met
compared to others and to find optimal combinations
methods for diagnostic and prognostic purposes.

Fourth, our analysis is based on a ‘‘microscopic’’ a
proach which can identify the statistical properties of t
self-affine cascade of heartbeat fluctuations at differ
scales~Fig. 5!. Our finding of multifractality quantifies the
complex dynamics of this cascade and suggests that amulti-
plicative mechanism might be the origin of this phenomen
The detailed features of the cascades and how they rela
otherprocesseswith cascades~e.g., turbulence! remain to be
addressed.

On a more general level, our approach provides a wa
testing a broad range of 1/f -type signals to see if they repre
sent multifractal or monofractal processes. As such, th
findings should be of interest to a very wide audience giv
the historic interest in elucidating the nature of differe
types of 1/f noise.

Finally, from a physiological perspective, the detecti
of robust multifractal scaling in the heart rate dynamics is
interest because our findings raise the intriguing possib
that the control mechanisms regulating the heartbeat inte
as part of a coupled cascade of feedback loops in a sys
operating far from equilibrium—an extraordinarily comple
behavior which in physical systems has been connected
turbulence and related multiscale phenomena.68–70 Further-
more, the present results indicate that the healthy heartbe
even more complex than previously suspected, posing a c
lenge to ongoing efforts to develop realistic models of
Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP
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control of heart rate and other processes under neuroa
nomic regulation.18,33,71–73
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