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Abstract

Although the mapping of codon to amino acid is conserved across nearly all species, the frequency at which synonymous
codons are used varies both between organisms and between genes from the same organism. This variation affects diverse
cellular processes including protein expression, regulation, and folding. Here, we mathematically model an additional
layer of complexity and show that individual codon usage biases follow a position-dependent exponential decay model
with unique parameter fits for each codon. We use this methodology to perform an in-depth analysis on codon usage bias
in the model organism Escherichia coli. Our methodology shows that lowly and highly expressed genes are more similar in
their codon usage patterns in the 50-gene regions, but that these preferences diverge at distal sites resulting in greater
positional dependency (pD, which we mathematically define later) for highly expressed genes. We show that position-
dependent codon usage bias is partially explained by the structural requirements of mRNAs that results in increased
usage of A/T rich codons shortly after the gene start. However, we also show that the pD of 4- and 6-fold degenerate
codons is partially related to the gene copy number of cognate-tRNAs supporting existing hypotheses that posit benefits
to a region of slow translation in the beginning of coding sequences. Lastly, we demonstrate that viewing codon usage bias
through a position-dependent framework has practical utility by improving accuracy of gene expression prediction when
incorporating positional dependencies into the Codon Adaptation Index model.
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Introduction
The initial investigations into the usage of synonymous
codons occurred nearly 40 years ago (Fiers et al. 1975;
Ikemura 1981). Since then, a large body of work has
shown that bias in codon usage is widespread across diverse
taxa (Sharp et al. 2005) and related to a variety of factors
including genomic base composition (Chen et al. 2004), mu-
tational bias (Lind and Andersson 2008; Hershberg and Petrov
2010), and selection for or against particular sequence motifs
that are used as control elements to differentially degrade or
traffic mRNAs to particular areas of the cell (Itzkovitz et al.
2010; Li, Oh, et al. 2012). Additionally, different species of tRNA
vary in their gene copy number, overall expression level, and
affinities for their target codons (Ikemura 1981; dos Reis et al.
2004; Rocha 2004). Under the assumption that elongation
rates may be diffusion limited in at least some cases, it has
long been speculated that codon usage bias may impact both
the speed and accuracy of translation. This, however, remains
a controversial topic with experimental support on both sides
(Sørensen and Pedersen 1991; Li, Oh, et al. 2012; Takahashi
et al. 2012; Charneski and Hurst 2013).

The consequences of codon usage bias are equally as
diverse as their origins. Computational studies have shown
that codon usage bias may play a role in gene transfer between
species (Tuller, Girshovich, et al. 2011) and protein folding
(Pechmann and Frydman 2012). Additionally, there is exper-
imental support showing that an understanding of codon
usage bias is important for viral defense and vaccination
(Coleman et al. 2008; Bahir et al. 2009; Li, Kao, et al. 2012),
resistance to environmental fluctuations in amino acid
levels (Elf et al. 2003; Subramaniam et al. 2012), temporal
or cyclic control of gene expression (Frenkel-Morgenstern
et al. 2012; Xu et al. 2013; Zhou et al. 2013), cotranslational
protein folding (Zhang et al. 2009), and recombinant protein
production (Kudla et al. 2009; Welch et al. 2009). Although the
majority of studies assume that codon usage bias is uniform
along the length of genes, several reports dating back to the
1980s showed that codon usage bias in particular gene regions
is distinct from others (Liljenstrom and von Heijne 1987;
Bulmer 1988; Chen and Inouye 1990; Eyre-Walker and
Bulmer 1993, 1995; Qin et al. 2004; Cannarozzi et al. 2010;
Bentele et al. 2013; Goodman et al. 2013) including clusters
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of “suboptimal” or “rare” codons at the beginning of genes
(Ohno et al. 2001; Tuller, Carmi, et al. 2010; Pechmann and
Frydman 2012).

There have been several proposed mechanisms as to
why rare codons are enriched in the 50-region of genes,
with one positing that a region of slow translation (a “trans-
lational ramp” or “bottle-neck”) at the beginning of
genes helps to keep ribosomes evenly spaced and avoid
collisions (Vind et al. 1993; Tuller, Carmi, et al. 2010).
In parallel to this line of research, several computational
and experimental reports in recent years have also high-
lighted the importance for reduced secondary structure
surrounding the start codon (Kudla et al. 2009; Gu et al.
2010; Tuller, Waldman, et al. 2010; Zhou and Wilke 2011;
Keller et al. 2012), particularly for prokaryotic gene
expression. More recently, researchers have drawn a criti-
cal link between codon usage and mRNA secondary
structure and showed that the choice of synonymous
codons can influence secondary structure (Tuller,
Veksler-lublinsky, et al. 2011; Bentele et al. 2013; Goodman
et al. 2013) and that codon usage bias in the 50-region of
genes may modulate translation initiation in addition to
elongation.

However, most studies to date have analyzed aggregate
measures of codon usage (codon adaptation index [CAI],
tRNA adaptation index, etc.) that mask the potentially
important contributions of individual codons. To illustrate
why this may be problematic, we note that the decreased
“translational efficiency” (for which codon and/or tRNA
adaptation indices are often a proxy) in the beginning of
gene sequences may simply be the result of one or two
amino acids having inverted preferences in this region as
opposed to a global phenomenon whereby all amino acids
select “slow” codons to modulate translation rate. This
distinction could be critical for testing mechanistic hypothe-
ses about evolutionary/mutational origins of codon usage
bias as well as in designing recombinant proteins for optimal
expression.

Further, most published studies also rely on bins of codons
or an unnatural delineation between gene regions (i.e., the
first ten codons vs. the rest of the gene) whose physical basis
or statistical rationale is rarely discussed. Lastly, although
researchers have known about the positional dependence
of codon usage bias for years, to our knowledge all statistical
models of codon usage bias fail to account for this effect.
Thus, there is a disconnect between this knowledge in
principle and its usage in practice.

To address these gaps, we sought to investigate
position-dependent codon usage bias through a rigorous
quantitative framework with a focus on the model
organism Escherichia coli. We validate previous observations
about heterogeneous codon usage with regard to position
and expand on the established link between base
composition, codon usage, and mRNA structure. Further,
we use model selection to determine a functional form to
individual codon usage biases and observe an unexpected
heterogeneity of parameters that should serve as a crucial
test for any proposed mechanistic explanations relating

to the origins of codon usage bias. We demonstrate that
our revised understanding of codon usage bias, viewed
through a position-dependent framework, can be simply
incorporated into existing codon usage models and used to
increase predictability in gene expression. Finally, we show
preliminary support that our results are likely not unique to
E. coli by demonstrating that the position-dependent
exponential decay model more accurately describes codon
usage biases in a variety of organisms.

Results

Codon Usage Bias Is Not Uniform with Regard to
Position

To test whether there is position-dependent bias in codon
usage preferences at the genome scale, we performed a�2 test
on 4,139 protein-coding genes from E. coli (NCBI/GenBank:
NC_00913.2). Briefly, we aligned all the coding sequences at
their start codon and partitioned the codons into ten posi-
tion-dependent gene regions, such that each bin contained
approximately 130,000 total codons (fig. 1A, see Materials and
Methods). To account for uneven gene lengths and maintain
a similar number of codons per bin, as illustrated in figure 1A,
bin width is progressively wider at distal sites. Within these
bins, we counted the occurrences of individual codons and
compared those counts to the expected mean and standard
deviation calculated from a null model derived by using a
synonymous codon shuffling algorithm. This method pre-
serves overall codon usage and amino acid structure within
each gene allowing us to quantify codon usage bias at all
positions rather than simply codon usage. We then calculated
the �2 statistic and determined the statistical significance of
the observed values.

For 41 out of a possible 59 redundant codons, we found
statistically significant (P < 0:00017) heterogeneous codon
usage bias using this method (fig. 1B, red codons). Further,
visual analysis of the squared z scores for each bin reveals that
the observed deviations from uniformity are predominantly
occurring in the 50-region of genes, whereas there appears to
be comparatively little heterogeneity in codon usage bias at
distal sites. To make sure that these findings were robust and
do not rely on a particular statistical test or binning scheme,
we tried two different binning schemes (50 and 100 bins, 41
and 38 significant codons respectively, supplementary fig. S1,
Supplementary Material online) and we performed three sep-
arate statistical tests for individual codons (all of which were
compared against a synonymous shuffling null model): The
position of median codon occurrence, the area under the
curve (AUC) of the cumulative distribution of codon usage
with regard to position, and the size of the largest deviation
from expectation in the cumulative distributions (see
Materials and Methods). Using these tests, neither of which
require data binning, we found that 24 out of 59 codons had
significantly nonuniform codon usage bias in at least three
out of the four tests and that 19 codons were significantly
nonuniform in all four of our tests (see Materials and
Methods and supplementary table S1, Supplementary
Material online).
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An Exponential Decay Model Most Accurately
Describes Patterns of Codon Usage Bias

We extended the observation of nonuniform codon usage
bias by testing the hypothesis that codon usage probability
follows a specific functional form: uniform (which assumes

that codon usage bias does not vary with regard to position),
linear, step function (which would imply a distinct region
of 50-codon usage bias), and exponential decay. For
each model, we used maximum likelihood estimation to
determine the best-fitting parameters to the conditional
codon probability data (the occurrences of the codon of
interest divided by the occurrences of the amino acid of
interest for all x values where x is the codon position inside
of genes). We then used model selection based on Akaike
information criterion (AIC) (Akaike 1974), which penalizes
models with higher numbers of parameters, to determine
which of the underlying models best describes all of the
codon data in the E. coli genome (see Materials
and Methods). We found strong evidence (odds ratio
~102,263 relative to uniform) that an exponential decay
model:

Pa:a:jðcodoni j xÞ ¼ ai,j expð�
x

�i,j
Þ+ ci,j ð1Þ

provides the best description of codon usage in the E. coli
genome where codoni refers to the ith codon that codes
for the jth amino acid, a:a:j, and x refers to the co-
don position relative to the start site with the start codon
being equal to x = 1. Each parameter is specific to the
individual codon and amino acid, hence the parameter
subscripts i,j. For clarity, however, we will simply refer
to these parameters in the general sense as a, c, and
�. The model parameters have straightforward interpreta-
tions: a + c represents codon probability at the start
codon, c is the asymptotic value that codon probabil-
ity approaches, and � is a measure of the distance over
which the decay occurs. In figure 2A, we show example fits
comparing the goodness of fit of the exponential decay and
uniform models for the two phenylalanine codons. Further,
in figure 2B, we show fits in the 50-region (first 100 codons)
for aspartic acid, phenylalanine, and glutamine to illustrate
the heterogeneity of data and the best-fitting forms for
several 2-fold redundant amino acids (see supplementary
figs. S2–S18 and tables S2 and S3, Supplementary Material
online, for log-likelihood and AIC values for each codon).
Although aspartic acid exerts no positional dependency
(pD, which we mathematically define later), glutamine devi-
ates sharply within a relatively short region of the gene
sequences, whereas phenylalanine codons show a much
slower decay with regard to position. The observation for
aspartic acid and other amino acids such as histidine (sup-
plementary fig. S5, Supplementary Material online) may be
explained by the fact that the dominant codon at the
genome-scale ends in a T (Bentele et al. 2013) and is therefore
unlikely to be further enriched in the beginning of gene se-
quences. In both of these cases, aspartic acid and histidine, the
dominant codon in highly expressed genes is also in contrast
to the dominant codon in the genome, but because highly
expressed genes are relatively few in number, the impact of
this may be may be masked by genome-scale aggregation.

From this data, we also wish to make two further notes.
First, if we restricted our analysis to a set of codon positions
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FIG. 1. Codon usage bias is not uniform with regard to intragenic
position. (A) This cartoon schematic shows one codon that is used
evenly throughout the toy gene set (codon a, blue) and one codon
that is not (codon b, orange). To statistically verify this, we align all genes
at the 50-region, group each codon into position-dependent bins, com-
pare codon usage in each bin to random expectation, and sum the
deviations over all bins. (B) Squared z scores of codon usage for
Escherichia coli as a function of position. Codons on the y axis are
grouped according to the amino acid they code for and are labeled
red if their usage bias is significantly nonuniform (P < 0:00017). Results
for each bin are depicted according to the quadratically scaled color bar,
and the ten bins are arranged from 50 to 30 .
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(e.g., the first 20, 50, and 100), we would possibly miss valuable
information: Although 20 codons may be sufficient to
encapsulate the positional heterogeneity for glutamine, it
would be insufficient to faithfully evaluate phenylalanine.
Second, this figure makes clear that the exponential decay
model is not likely to be the simplest model, in terms of the
number of parameters, to describe every individual amino
acid. This can be seen by looking at aspartic acid: The
exponential model fits the data very well, but the uniform
model appears to fit equally well and does so with two fewer
parameters. However, the uniform and linear models are
simply unable to fit certain data (e.g., glutamine) making
the exponential model a more general choice. For our
model selection, we ask which model fits best for the set
of all codons and arrive at the exponential decay model
even though the fit is not necessarily the best/simplest for
each individual codon (though it is the best for the
overwhelming majority, see supplementary tables S2 and
S3, Supplementary Material online). In fact, the heterogeneity
of parameters that we observe between amino acids was
striking and unanticipated.

Intragenic Heterogeneity of Codon Usage Bias Is More
Pronounced in Highly Expressed Genes

Most studies of intragenic codon usage bias have looked
at the entire genomes of organisms. Because overall codon
usage bias varies between genes from the same organism,
certain E. coli genes may be contributing to the variation
in intragenic codon usage bias more than others (Bulmer
1988). To test this hypothesis, we used a data set of
single molecule quantification of fluorescently tagged pro-
tein measurements collected under steady-state growth

conditions in rich medium at 30 �C (Taniguchi et al. 2010)
to categorize low and high abundance proteins based on the
top and bottom quartile of expression (see Materials and
Methods, supplementary fig. S19, Supplementary Material
online, for expression distribution). This delineation allows
for sufficient separation of proteins, such that there should
be no overlap between these two bins and each bin still
encompasses enough genes, such that we have high
confidence in the fits. Although this data set only contains
measurements for 1

4 of the E. coli proteome, it is the largest
proteome level data set for E. coli that we are aware of and
covers a wide distribution of expression levels. We separately
calculated the best-fitting exponential parameters for each
codon in each gene set. Using the three parameters of
equation (1), we define a single metric—herein referred to
as “pD”—that encapsulates the degree and magnitude of the
heterogeneity in usage bias for a codoni into a single number
(fig. 3A):

pDcodoni
¼

Z L

0

dx½Pa:a:jðcodoni j xÞ � Pa:a:jðcodoni j LÞ�

ð2Þ

where L is the median gene length in the genome and
Pðcodoni j xÞ obeys equation (1) with the parameter values
obtained through maximum likelihood fits (see Materials and
Methods). Essentially, our pD metric is an integral of the
exponential function that is bounded by the median
gene length, a limitation that we impose so as to have a
high degree of confidence in the codon probability data,
which gets increasingly noisy at distal sites. Positive values
of pD correspond to codons used more frequently
in the beginning of gene sequences, and negative values of
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FIG. 2. The functional form of codon usage bias. (A) For the amino acid phenylalanine, we show the conditional probability of observing a codon as a
function of position (black line, smoothed with a sliding window of eight codons). We also show the best-fitting exponential model (red) with
corresponding 95% confidence intervals (pink) and the uniform model (cyan, confidence intervals not shown for clarity). The survival curve of
Escherichia coli gene lengths is highlighted at the top to illustrate the basis for increasingly wide-confidence intervals due to data sparseness at distal sites.
(B) Data for three different 2-fold redundant amino acids as in (A) but with the x axis extending only to 100 codons to highlight heterogeneity in the 50

region.
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pD correspond to codons used less frequently in the
beginning relative to the end of genes.

We compared the absolute values of pD for all codons in
lowly and highly expressed genes and saw that highly
expressed genes have significantly greater pD in their codon
usage bias compared with lowly expressed genes (Wilcoxon
signed-rank test, P < 0:0001). Further, within both low and
high expressing genes, we divided codons into two sets, which
we term as “rare” and “abundant,” according to their usage
within a reference set of highly expressed genes (Sharp and Li
1987). By this definition, rare codons are those whose
frequency is less than random expectation in the reference
set, and abundant codons are used at a frequency greater
than expectation. We found a highly significant difference
in pD values between these two codon sets within highly
and lowly expressed genes (Wilcoxon rank-sum test,
P < 0:0001 and P ¼ 0:0007; fig. 3B, top). Namely, the rare
codons have positive values of pD and thus are enriched in
the beginning of genes. This difference also persists when we
use other metrics, such as the tRNA adaptation index (dos
Reis et al. 2004), to classify codons (supplementary fig. S20,
Supplementary Material online) and other delineations of
lowly and highly abundant proteins such as the bottom
and top 50% of protein abundances (supplementary figs.
S19 and S21, Supplementary Material online).

We also split codons into sets according to the identity
of the third position base: A/T or G/C (fig. 3B, bottom).

Again, the difference between these sets was significant for
both low- and high-abundance protein sets (P < 0:0001 and
P ¼ 0:0006, respectively) suggesting that the base composi-
tion of codons may play a role in determining the pD of
codons and that this phenomenon is equally important in
lowly and highly expressed genes.

For each codon, we have probability values as a function of
position in both the low-abundance and high-abundance
protein sets. This allows us to compute the difference be-
tween these gene sets for a given codon at two positions,
the beginning of gene sequences and a distal site for which we
use the median length E. coli gene:

�beginning ¼ j Pa:a:jðcodoni j x ¼ 1Þhigh

� Pa:a:jðcodoni j x ¼ 1Þlow j
ð3Þ

�distal ¼ j Pa:a:jðcodoni j x ¼ 281Þhigh

� Pa:a:jðcodoni j x ¼ 281Þlow j
ð4Þ

In figure 3C, we show that the cumulative distribution of
these absolute differences. We observe that differences at
the 50-end (�beginning) are smaller in magnitude when com-
pared with the absolute differences in codon probabilities at a
distal site (�distal) (Wilcoxon signed-rank test, P ¼ 0:0115).
Thus, in E. coli, lowly and highly expressed genes are more
similar in their codon usage biases at the beginning of gene
sequences than at distal sites. Assessing the generality of this
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FIG. 3. The effect of gene expression on position-dependent codon usage bias. (A) Illustration of the pD metric and exponential parameters. (B) pD of
codons in the genes of low- and high-abundance proteins split according to codon prevalence (top) and third position base (bottom). We observe a
significant difference in absolute pD of the codons between the two gene sets and differences within each gene set according to rare and abundant
codons. Within gene sets, we also observed significant differences in pD between codons that end in A/T versus those that end in G/C. (C) For each
codon, we took the absolute difference in codon probabilities between the low- and high-abundance protein data sets and did so at two different
points, the beginning of sequences and the median. Shown are the cumulative distributions of these differences.
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finding will require high-quality proteome level data sets for
other organisms that can be used to replicate this analysis.

Codon Usage Directly Affects mRNA Structure

To investigate the mechanistic basis for our findings, we next
considered the effect of codon usage on mRNA structure.
Several recent studies have illustrated that minimal secondary
structure surrounding the start codon is important for
translation initiation (Kudla et al. 2009; Gu et al. 2010;
Bentele et al. 2013; Goodman et al. 2013). Throughout
the rest of the mRNA sequence, this constraint does
not exist, and, in fact, strong mRNA structure may be impor-
tant for regulating mRNA half lives (Lenz et al. 2011).
Given that structural demands are position dependent, we
sought to determine whether codon choice affects structure
and thus whether this constraint may be a factor
promoting position-dependent codon usage bias (Tuller,
Veksler-lublinsky, et al. 2011; Bentele et al. 2013; Goodman
et al. 2013).

We therefore investigated the base pairing probability for
each nucleotide in each gene within the high abundance
protein set (calculated from the Boltzmann ensemble of
structures, see Materials and Methods). We show that
compared with synonymously shuffled null-model
counterparts, actual genes have significantly less structure
in the 50-region (Wilcoxon rank-sum test on positions +5
to +15, P < 0:0001, fig. 4A). Additionally, we developed a
synonymous shuffling method that preserves positional
frequencies of codons (and thus GC content at each position)
within the gene set (see Materials and Methods) and saw that
this method also leads to significantly less pairing probability
in this region (P < 0:0001) compared with the null model
but still higher probability compared with actual genes
(P < 0:0001). This method suggests that the codons enriched
in the 50-region of genes are less likely to participate in strong
structural interactions.

Because evolution is an iterative process, we sought
to understand changes to structure in response to differ-
ent types of mutations. We thus looked at the effect of
all possible single synonymous substitutions in the first 12
codons on the folding energy of the �36 to +36 region of
mRNAs from the highly abundant proteins (see Materials
and Methods). In figure 4B (left), we show that random
mutations in this region are likely to increase struc-
ture, again verifying a selective bias for minimal mRNA
structure around the start codon. As we expected, single
synonymous substitutions from G/C ! A/T ending
codons are more likely to decrease or maintain the
structural properties of mRNA compared with third position
A/T ! G/C substitutions, which result in increased
structure (Wilcoxon rank-sum test, P < 0:0001) (Park et al.
2013). Interestingly, we also find that synonymous
mutations from abundant ! rare codons are less likely
to introduce structure in the 50-region compared with
mutations from rare! abundant codons (Wilcoxon rank-
sum test, P < 0:0001) suggesting that the usage of rare
codons helps to maintain minimal secondary structure in

this region, likely a result of their base composition which
supports recent findings (Bentele et al. 2013; Goodman
et al. 2013).

We repeated the above mutation simulation for a region
distal to the initiation codon ( +36 to +108, mutating the 12
codons from +72 to +108 region for direct comparison to
our findings in the initiation region). At these distal sites, we
confirmed that random mutations tend to decrease structure
(fig. 4B, right). In contrast to the 50-region, distal gene regions
are more likely to tolerate substitutions which preserve their
strong structure (i.e., substitution to G/C rich and/or
abundant codons). This analysis supports our hypothesis
that synonymous codon choice affects mRNA structure
and that requirements for reduced structure in the
50-region of transcripts may result in selection for a unique
codon set. As opposed to previous studies (Tuller, Veksler-
lublinsky, et al. 2011) that investigated structural robustness
with regard to transcriptional fidelity, we show that
robustness of the gene sequences to different substitutions
depends on the position along a gene as well as the type of
substitution. This likely has a mechanistic basis in translation
initiation where mRNA structure around the start codon is
potentially a rate-limiting barrier. Because most RNA
structure is the result of local interactions, this effect should

tn801+ot63+tn63+ot63-

A

B

FIG. 4. The link between codon usage bias and mRNA structure. (A) We
folded a 200mer (�50 to +150 nt, relative to the start codon) region for
each gene in the high abundance protein set and extracted the individ-
ual base pair probabilities. For clarity, we illustrate median pair proba-
bilities relative to the null model created by synonymous shuffling
within genes (green). Actual genes (blue) and an alternative gene set
created by shuffling synonymous codons between genes in a manner
that preserves positional biases (red) have significantly less structure in
the 50 region (Wilcoxon rank-sum test on raw data, p < 0:0001 for all
cases illustrated). (B) We calculated the effect on folding energy of single
synonymous codon substitutions in the genes of high abundance
proteins. Left: The effect of substitutions in the 50 region (�36
to +36 nt, relative to the start codon) is variable depending on the
nature of the codon. Right: The same analysis for a region distal to
the start codon ( + 36 to 108 nt). For all cases illustrated, error bars
represent standard error of the mean and P < 0:0001 according to
Wilcoxon rank-sum test.
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be applicable within a narrow window of codons/nucleotides
that surround the start codon.

Position-Dependent Bias in tRNA Usage

The previous results, along with several recent studies
(Bentele et al. 2013; Goodman et al. 2013), lend clear support
for the hypothesis that mRNA structural constraints play an
important role in shaping codon usage patterns. However, the
parameter heterogeneity observed in figure 2, and in
particular the large � values—the length that it takes codon
usage bias to reach its asymptotic value—that we found for
some codons, suggests that mRNA structure alone is likely
insufficient to explain all of the observed positional
dependencies.

In most cases, the 2-fold redundant amino acids are read
by one tRNA species via wobble-rule base pairing, so the
results presented in figure 2 essentially represent variation
in codon usage given a particular tRNA. Interestingly, we
note that in E. coli K12, the only 2-fold redundant amino
acid to have two different tRNA anticodons is glutamine,
the amino acid with the sharpest pD in figure 2. To test for
the possibility of a translational ramp or bottleneck consisting
of slowly translated codons at the 50-end, we turned to 4-fold
degenerate amino acids, which are frequently read by at least
two different tRNA species (one that predominantly reads
purines [A and G] and another that reads pyrimidines [T and
C] according to wobble-base pairing). pD in these groups of
codons would represent between tRNA variation in codon
usage as opposed to the within tRNA variation that we
previously observed for 2-fold redundant amino acids.

If AT/GC content variation is the main driver of codon
usage patterns with regard to position, we expected that
grouping the purines and the pyrimidines separately would
lead to relatively uniform usage patterns with regard to
position for these separate “tRNA-classes,” though we

expect the class of codons read by rarer tRNAs to be less fre-
quent overall as has been previously observed (Ikemura 1981).
However, because the tRNAs that read these two groups of
codons are often present at different concentrations, if there
is a benefit to slow translation in the 50-region, we would
expect codons that are predominantly read by the less
abundant tRNAs to be enriched in this region. What
we observe for nearly all cases is that the rarer tRNA
group (quantified by the cumulative gene copy number of
the cognate tRNAs [tRNAGCN]) is indeed enriched in the
beginning of coding sequences (fig. 5). Further, the
position-dependent usage of codons read by different tRNA
species occurs over a relatively long range and not the narrow
window that would be expected to influence mRNA second-
ary structure around the start codon. We repeated the above
analysis for 6-fold redundant amino acids and reach the same
conclusion (supplementary fig. S22, Supplementary Material
online). Although we did not observe any instance of codon
groups read by abundant tRNAs being enriched at the 50-end,
there are several cases, such as for the amino acids threonine
and serine, where we do not observe either enrichment or
depletion of codon groups even though tRNA gene copy
numbers are heterogeneous. While further investigation
might resolve some of these differences, these data neverthe-
less suggest that in addition to structural requirements,
codons read by rare tRNAs are enriched at the 50-end of
genes.

Intragenic Codon Usage Bias Can Be Used to More
Accurately Predict Gene Expression

Our findings support a new understanding of codon usage
bias: that codon preferences vary with regard to intragenic
position, that this variation is partially but not entirely based
on the structural requirements of mRNA, and that intragenic
variation is particularly pronounced in highly expressed genes.

P
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c 2| 
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1+
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Threonine Alanine Valine Glycine Proline
ACT+ACC

ACA+ACG

GCT+GCC

GCA+GCG

GTT+GTC

GTA+GTG

GGT+GGC

GGA+GGG

CCT+CCC

CCA+CCG

 = 3

tRNAGCN

tRNAGCN tRNAGCN tRNAGCN tRNAGCN tRNAGCN
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 = 2
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 = 2
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FIG. 5. pD in codon groups and its association with cognate-tRNA gene copy number. For all 4-fold redundant amino acids, we group codons into
separate sets under the assumption that single tRNA species are more likely to read codons within these groupings according to wobble-base pairing
than between groupings. We illustrate conditional probabilities as in figure 2 and highlight the gene copy number of the cognate tRNAs for each group
(tRNAGCN) to show that codons read by the rarer tRNAs are enriched in the 50 region.
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Others have noted (Gu et al. 2010), and our analysis
corroborates, that there are differences in both codon usage
and mRNA structure between lowly and highly expressed
genes at the beginning of coding sequences. Here, however,
we have shown that the magnitude of codon usage bias dif-
ferences between lowly and highly expressed genes at the
beginning of genes is smaller than the equivalent differences
at distal sites—suggesting that the pressure for minimal
mRNA structure in the region surrounding the start codon
is relatively stronger than the need for efficient or accurate
translation of individual codons. In lowly expressed genes,
selection for accurate or efficient translation may be dwarfed
by other evolutionary processes such as biased mutation and
genetic drift. However, in highly expressed genes, the balance
of these forces may be tipped in favor of selection for
individual codons (fig. 6A). If this is indeed the case,
accounting for heterogeneity in codon usage preferences
should improve the accuracy of existing codon usage bias
models.

There are many strategies to identify and quantify codon
usage bias (dos Reis et al. 2004; Qian et al. 2012); here, we
attempt to incorporate these positional dependencies into
one of the most popular methods: the CAI (Sharp and Li
1987). The CAI relies on a reference set of highly expressed
(Sharp and Li 1987) or highly biased (Carbone et al. 2003;
Raiford et al. 2010) genes to determine a coefficient for
each codon that is based on the frequency of codon usage
in the reference set. The coefficient takes a single value for
each codon in the classical approach corresponding to the
uniform assumption of codon usage bias. In contrast, we fit
our exponential decay model, equation (1), to the same ref-
erence gene set and use these position dependent functions
in place of the single value approach (see Materials and
Methods).

First, we observed that the reference set of genes has highly
skewed codon usage biases (supplementary fig. S23,
Supplementary Material online) and show that calculating
the CAI at each position within the reference set (rather
than for each gene) leads to a noticeable dip in CAI shortly
after the start codon (fig. 6B, blue dashed line). To understand
why this result is slightly paradoxical, it is important to note
the rationale behind the CAI: the model is a distance metric
that calculates how well the codon usage patterns of a given
gene match the codon usage patterns of a reference set of
genes that are known to be highly expressed. However, we
have shown here that the codon usage patterns of the refer-
ence set are inadequately described by a single number for
each codon, and therefore, we hypothesize that the distance
metric should account for position-dependent codon usage.
This hypothesis makes a strong prediction: if the position-
dependent codon usage biases are of physiological relevance,
accounting for this should lead to more accurate predictions
of gene expression. However, if the position-dependent
codon usage biases that we observe in the reference set are
overfitting to noise or are simply of no consequence, we
would expect our predictions of genome-wide transcript
and protein abundances to be worse.

We thus utilize our exponential fits to the reference (train-
ing) set to come up with a position-dependent array of co-
efficients for each codon, termed the position-dependent CAI
(pdCAI) model. One caveat with this methodology is that we

A

B

C

FIG. 6. Accounting for position-dependent codon usage leads to
superior estimates of gene expression levels. (A) Our model posits
that selection for reduced mRNA structure around the start codon
acts strongly on all sequences relative to disruptive processes such as
genetic drift and mutational biases. However, preference for accurate
and efficient translation is a second and weaker effect that is largely
apparent in highly expressed genes and becomes stronger distal sites. (B)
Rather than to calculate the CAI for each gene, we aligned genes at
the start codon and calculated the CAI score for each position in either
the reference set or genome. The dip in adaptedness after the start
codon for both data sets (blue) is corrected by using exponential fits to
the codon usage in the reference set (red). (C) For two data sets of
transcript abundances (Taniguchi et al. 2010; Shiroguchi et al. 2012) and
two data sets of protein abundances (Lu et al. 2007; Taniguchi et al.
2010), we show that the R2 correlation coefficient between the CAI
and gene expression data is increased when using exponential
fits to calculate the CAI as opposed to the traditional uniform
assumption. Top, raw values; bottom, % increase. Error bars show stan-
dard deviation from 10,000 bootstrap resampled sets (paired t-test,
P < 0:0001 for all cases).
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limit our analysis to the final codon position of the longest
gene in the reference set, as we are unable to say how codon
preferences in our reference set of genes might extrapolate
past this point. Thus, for a given test-set gene, we only include
the codons up to position 705 in our calculation of the pdCAI
(though we note this cutoff encompasses the entirety
of > 90 % of endogenous E. coli genes [fig. 2A, top]).
Otherwise, we follow the same mathematics and logic
behind the original CAI and show that, as expected, our
pdCAI (or spatial CAI) model corrects the dip in codon adapt-
edness for both the reference set and the whole genome
when the calculation is performed in a way that treats all
codons of a given position as a gene (fig. 6B, red lines).

It is still unclear whether our correction leads to superior es-
timates of physiologically interesting properties. Namely, the
usage of a rare codon early in a gene sequence will boost
the genes overall CAI score in our model, whereas this
usage will be penalized by the standard CAI. In figure 6C,
we show that in two distinct data sets of E. coli transcript
abundances (Taniguchi et al. 2010; Shiroguchi et al. 2012) as
well as two distinct data sets of protein abundances (Lu et al.
2007; Taniguchi et al. 2010), our pdCAI model makes more
accurate predictions than the traditional approach with
percent increases in the range of 10–25% (bootstrap
resampling followed by paired t-test, for all cases
P < 0:0001). Further, in addition to providing robust
improvements in predictive power across several data
sets, this increase in predictive power is also robust to an
entirely different choice of reference set (Carbone et al.
2003) (see supplementary fig. S24, Supplementary Material
online).

Discussion
The pervasive understanding of codon usage bias assumes
that rare codons are suboptimal, and their usage is thus
minimized in coding sequences, particularly those of highly
expressed genes. Our work suggests that this notion of
globally “optimal” or “suboptimal” codons is misguided and
that observed codon preferences are actually the result of
contrasting forces, the magnitude of which varies significantly
with distance from the start codon. A codon may at once be
optimal with regards to translational efficiency and/or accu-
racy, but suboptimal with regard to secondary structure, all of
which makes a blanket term of “optimality” problematic in
light of ours and other recent results (Cannarozzi et al. 2010;
Bentele et al. 2013; Goodman et al. 2013).

By modeling individual codon probabilities, we uncover a
unifying functional form to codon usage bias. We find an
unexpected heterogeneity in the easy-to-interpret
parameters for the exponential decay function for different
codons within E. coli. These results question the utility and
validity of defining the 50-region by an arbitrary window of
codons surrounding the start codon and treating this region
as “distinct.”

We draw a link between codon usage and mRNA structure
and support previous findings by showing that the conflicting
demands for and against mRNA structure at different posi-
tions likely contributes to synonymous codon selection

(Tuller, Veksler-lublinsky, et al. 2011; Bentele et al. 2013;
Goodman et al. 2013). By itself, this is a rather unsurprising
fact because RNA secondary structure is the result of base
pairing interactions, and synonymous codons are composed
of different bases. However, statistical investigations to
support this assertion have until very recently been lacking.
Our methodology is distinct and complementary to several
recent studies that have investigated this link, and we draw
largely similar conclusions: Codon choice has a clear impact
on secondary structure and empirical codon usage biases re-
flect competing demands for and against secondary structure
at different gene positions (Tuller, Veksler-lublinsky, et al.
2011; Bentele et al. 2013; Goodman et al. 2013).

In contrast to these recent studies that focus on the
prominent role of mRNA structure in shaping 50-codon
usage biases, we also show that mRNA structural constraints
are likely inadequate to account for the heterogeneity in
codon usage biases that we observe. Nucleotides distal to
the start codon are unlikely to participate in secondary
structure around the initiation region, which made the
observation that several codons vary in their usage at
relatively distal sites seem paradoxical. However, we show
that codons read by less abundant tRNAs are also enriched
in the 50 of coding sequences. This finding could be inter-
preted as support for the translational bottle-neck hypothesis,
whereby enrichment of rarely used codons in the beginning of
coding sequences could serve as a mechanism to space out
ribosomes during translation so as to avoid collision. Another
possible mechanism for the observed positional dependencies
stems from the fact that different tRNAs vary in their mis-
reading rates (Shah and Gilchrist 2010). Errors in translation
are likely to be more costly at sites distal to the start
codon, and this could lead to stronger selection with increas-
ing gene length (Stoletzki and Eyre-Walker 2007).
Teasing apart these two possibilities will require further
investigations.

We note that although position-dependent codon usage
bias had previously been observed, the majority of literature
on codon usage bias has either ignored this fact or treated it
as relatively inconsequential (Gingold and Pilpel 2011; Plotkin
and Kudla 2011). Our framework allows position-dependent
codon usage biases to be incorporated into existing models,
which we demonstrate here by redefining the popular CAI.
Our aim here is not to develop a model to predict protein
abundances with maximal accuracy. Rather, we aim to show
that the increased accuracy that we see is supportive of the
fact that the 50 usage of rare codons in the reference set and in
the genome at large is likely beneficial in some regard.
Additionally, this result allows us to show that positional de-
pendencies are far from inconsequential, and that they can be
accounted for with relatively simple changes to existing
models. We anticipate that more thoroughly investigating
the pdCAI model with regard to different reference set
choices and possible perturbations regarding how to most
efficiently treat the decreasing confidence of our reference
set fits at distal codon positions (which is particularly
problematic for small gene sets) may result in further im-
provements. All of the predictive improvements that we
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report are of endogenous transcript/protein levels, but
the CAI model is frequently used in evaluating and
designing recombinant proteins. The improvements that
we demonstrate may, therefore, have utility in this field as
well, though proper evaluation will require careful experimen-
tal controls to account for confounding issues such as mRNA
structure around the start codon.

Additionally, although we focused here on intraorganism
codon usage biases, the findings presented are likely not
unique to E. coli. Toward this end, we repeated our model
selection analysis on 18 other microbial genomes randomly
chosen to sample diverse taxa and found that the exponential
decay model of codon usage bias is systematically selected as a
better fit to the data than the uniform model (fig. 7A,
supplementary table S4, Supplementary Material online).
Although this fact alone may be unsurprising given known
differences in AT/GC skews at the 50-end of genes, further
investigation of how pD varies with organismal GC content,
genome size, average gene lengths, and so on may reveal
unexpected patterns. Additionally, we note as one example
that the distribution of � values for E. coli vary over a much
larger range than equivalent values from Pseudomonas
aeruginosa (fig. 7B). Values of � on the order of 10–100 are
most likely indicators of the structural importance of mRNA,
and because P. aeruginosa is a relatively G/C-rich organism, we
hypothesize that enrichment of A/T rich codons in
the beginning of genes could conceivably account for the
majority of pD that is observed for this organism.
Conversely, large � values (e.g., >103) are the result of
codons with little or no pD, of which there are far more in
E. coli than P. aeruginosa. The generality of our method and
the ease of parameter interpretation suggest that

comparative genomics investigations into interspecies para-
meter heterogeneity may yield novel insight into the forces
that shape and constrain microbial genome evolution.

The effect of specific sequence features on a given gene’s
expression level is highly context dependent (Salis et al. 2009),
and a multitude of factors shape the usage of codons within
genes—many of which are undoubtedly particular to individ-
ual regulatory contexts or protein specific constraints
(Frenkel-Morgenstern et al. 2012; Pechmann and Frydman
2012; Kosuri et al. 2013; Mutalik et al. 2013; Xu et al. 2013;
Zhou et al. 2013). However, we have uncovered a clear global
pattern of codon usage within genes that is dependent on
location and is partially related to differential requirements for
mRNA structure. We anticipate that our results will be highly
relevant in the field of synthetic biology and in genome
engineering applications for which organism-specific
sequence design is an important consideration. Further, the
quantitative description of codon usage biases that we have
outlined here can help to serve as a testing ground for evo-
lutionary investigations into the complex origins of codon
usage bias within and between species.

Materials and Methods

�2 Test of Significance for Uniformity in Codon Usage
Bias

After filtering out coding sequences that did not have
recognizable start and stop codons, contained internal stop
codons or nonstandard bases, whose length was not a mul-
tiple of three, or was annotated as a pseudogene, we aligned
genes at the start codon, removed the start and stop codons,
and for each subsequent codon, calculated the �2 value:

�2 ¼
Xn

i¼1

ðO� EÞ2

�2
¼
Xn

i¼1

z2 ð5Þ

where O is the observed counts per bin, E is the expected
counts per bin, � is the standard deviation of the expected
distribution per bin, n is the number of bins, and z is the z
score per bin. We then compared this value with a w2 distri-
bution with degrees of freedom equal to n – 1. A codon was
deemed significant if the probability of observing that value:
P < 0:00017 according to Bonferroni multiple-testing
correction, which is calculated from the number of tests
(59) at a significant P value ¼ 0:01.

Binning Schema

First, we lined genes up at the start codon and searched for an
initial bin width that would contain approximately 130,000
codons (the entire E. coli genome contains approximately
1,300,000 codons, thus ten equal-sized bins required approx-
imately 130,000 codons per bin). The algorithm starts with
codon position one of all genes and if there are less than
130,000 codons then we add position two, etc. Once we
found a bin width that contains more than 130,000 codons,
we compare the bin with the previous width and choose the
bin size that is closest to the target number (in this example:
130,000). We then start our next bin at the next position and
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FIG. 7. Position-dependent codon usage bias in multiple organisms.
(A) The observed log odds ratios for the exponential decay model fits
relative to uniform model for different organisms. (B) The distribu-
tion of � values for E. coli and P. aeruginosa highlights potential
differences in the evolutionary forces that have shaped the respective
genomes.
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iterate until the entire genome is partitioned with each codon
position occurring in one and only one bin. In figure 1B, the
first bin encompassed positions 1–34 of all genes, and bins
were progressively wider at distal regions to account for fewer
genes and thus less data at these sites. It should be noted that
one potential limitation of the �2 arises when bins contain
fewer than five counts. In our published bin scheme, however,
every bin for every codon has far more than actual ten ob-
servations. Further, not content with selecting a bin scheme
arbitrarily, we investigated a variety of other target bin num-
bers and sizes and found that these did not affect the results
of figure 1 (supplementary fig. S1, Supplementary Material
online).

Scrambling Genes to Determine Expectation

For each gene, we followed a commonly used synonymous
codon shuffling algorithm where codons that code for the
same amino acid were randomly shuffled within genes. Thus,
in a scrambled genome, each gene codes for the same amino
acids and does so using the same frequency of each codon.
This procedure allows us to preserve possible selection for or
against particular codons or GC content within particular
genes and to isolate the variable of interest, which in our
case is the deviation of spatial uniformity in codon usage
bias. The expected counts in figure 1 were calculated from
200 scrambled genomes.

We also developed a novel synonymous codon shuf-
fling method that we used to interrogate mRNA structure
in figure 4: Rather than shuffle synonymous codons within a
gene, we allow for shuffling of codons between genes as long
as the codons occur at the same position. This method pre-
serves the amino acid structure of each gene but not codon
usage within genes. Rather, the method preserves positional
codon frequencies of the gene set while introducing a similar
number of codon changes per gene. Thus, were we to con-
duct the analysis in figure 1 using this as a null model, counts
per bin for each codon would be identical between all shuf-
fled genomes as well as in the actual genome.

Other Statistical Tests of Codon Usage Bias

We performed three other statistical tests to determine
whether any given codon was significantly nonuniform in
its usage bias. All of the following required lining the genes
up at the start codon as before but neither require binning of
codons, which was necessary for the �2 test.

In the median test, we simply asked (for each codon) at
which codon position the median codon in the genome
occurs at. Thus, if a codon appears 1,000 times, we wanted
to know at what position the 500th codon falls. We did this
for the 200 scrambled genomes and found a discrete uniform
distribution that allowed us to measure the deviation from
the mean of this distribution that was observed in the actual
genome. A median closer to the start than expected would
imply that this codon occurs more frequently in the begin-
ning of genes than random expectation. The significance of
this deviation was calculated via a two-tailed significance test.

In the AUC and the d-value tests, we relied on a cumulative
distribution function (CDF) of codon counts where the x axis
is the absolute codon position rescaled to 1 and the y axis is
cumulative counts of the codon of interest rescaled to 1. If a
codon occurred equally throughout the genome and all genes
were of equal length, then perfect uniformity in usage would
result in a diagonal line in the CDF and the AUC would equal
0.5. A codon occurring more in the beginning would have an
AUC more than 0.5, whereas a codon occurring at the end of
genes would have an AUC less than 0.5. However, because
genes are not of equal length, the AUC was far greater than
0.5 due to the fact that few genes are represented at distant
codon positions. However, we again assessed the significance
of the actual genome findings by comparing against the AUC
for 200 scrambled genomes, which resulted in a normal dis-
tribution of values to test our observed value against.

Lastly, using the CDF of scrambled genomes, we deter-
mined the “average” CDF and found the absolute value of
the largest deviation from this average CDF when plotted
against the actual genome (the largest y axis deviation regard-
less of where it occurred). Unlike the median and AUC tests,
the distribution of the randomized genomes was not normal
because they were absolute values but a one-tailed test
allowed us to determine the significance of the actual
genome compared with the expectation from 200 scrambled
genomes. Crucially, we observed a large degree of overlap
between these tests with the w2 test being the most conser-
vative estimate and the d value the least (supplementary table
S1, Supplementary Material online).

Maximum Likelihood Estimation of Model Parameters

When amino acid j (a.a.j) is encountered at location x,
the probability of codon i (codoni) is defined by
Pðcodoni j x,a:a:jÞ. We considered uniform, linear, step
function, and exponential models for this codon usage prob-
abilities. These models, each consisting of i functions (one for
each codon i) of model parameters �i and location x, are
defined as:

Uniform : Pið�i, xÞ ¼ �i1 ð6Þ

Linear : Pið�i, xÞ ¼ �i1x + �i2 ð7Þ

Step function : Pið�i, xÞ ¼ �i1, if x < �i3,

Pið�i, xÞ ¼ �i2, if x � �i3

ð8Þ

Exponential : Pið�i, xÞ ¼ �i1 exp
�x

�i2

� �
+ �i3: ð9Þ

Note that for ease of following, in case of the exponential
model we refer to �i1 as a, �i2 as �, and �i3 as c in the main text.

We defined nik as the number of times we observe codon
i at location x = k among Njk genes with amino acid j at x = k.
The observed fractions yik of codon i usage at location k for
amino acid j are obtained directly from these values: They
are the ratios of nik (the number of observations of codon i at
k) to Njk (the number of possibilities to use codon i at k).
Each nik is binomially distributed with the probability
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Pðcodoni j x ¼ k, a:a:jÞ, giving rise to the probability density
function):

f ðnij jNkj, Pið�i, xÞÞ ¼
Njk

nik

� �
Pið�i, kÞnikð1� Pið�i, kÞÞNjk�nik

ð10Þ

Assuming that the nik values are statistically independent
from each other, the log-likelihood function for the model
parameters is:

lnLð�i j ni, NjÞ ¼
X

i

lnf ðnik jNjk, Pið�i, kÞÞ ð11Þ

where ni and Nj are the vectors comprising nik and Njk for all
codon locations k.

For each codon, we estimated the parametersb�i for each of
the four models by finding the parameter set that maximizes
this log likelihood:

b�i ¼ argmax lnLð�i j ni, NjÞ ð12Þ

For optimization, we used the “fmin” function of the “SciPy”
scientific package for “Python” programming language, which
utilizes a downhill simplex algorithm. To ensure that the
algorithm does not get stuck at local maxima, we performed
each optimization five times, starting from different initial
points.

Model Selection

We used maximum likelihood estimation to determine the
likelihood that our model fits individual codon data. To
correct for the possibility of overfitting, we used AIC
(Akaike 1974), a measure of goodness of fit for a statistical
model that is grounded in information theory. It is defined as:

AIC ¼ 2k� 2 lnL ð13Þ

where k is the number of free parameters in the model, andL
is the maximized likelihood for the estimated model. AIC is a
relative measure of information loss caused by using the
model to describe reality. The model with the minimum
AIC value is the most likely model to minimize information
loss compared with the underlying true process (Burnham
2004). The relative probability PM,AIC of model M minimizing
the information loss is given by:

PM,AIC ¼ expð
AICmin � AICM

2
Þ, ð14Þ

where AICmin is the minimum AIC among all models, and
AICM is the AIC of model M.

For all data sets of all organisms we investigated, we
calculated the AIC value for each of the four tested models.
First, we fit the codon usage probability function using MLE to
each codon. We obtained the log likelihood for the entire
model by summing the log likelihoods of the individual fits.
The total number of free parameters is the number of codons
times the parameters in the model for a single codon. After
calculating the AIC values in this manner, we also calculated

relative odds of each model to minimize information loss
according to equation (14).

mRNA Structural Calculations

All free energy calculations were calculated using the RNAfold
method of ViennaRNA (Hofacker 2003) with default param-
eters. To extract the Boltzmann distribution of sequences, we
used RNAsubopt (Hofacker 2003) and the �p 1000 flag.

For mutation studies, we used the transcript sequences of
the 500 highly expressed genes. For each gene, we iterated
through the codons within a region of interest (either 0 to
+36 nt, or +72 to +108 nt), and if it matched the identified
criteria (i.e., in the rare set), we swapped it to a synonymous
counterpart with the desired criteria (i.e., in the abundant set).
With one swap per gene, we refolded and calculated the
minimum free energy (MFE) of the structure and subtracted
this from the original MFE for that sequence to determine the
change in free energy from this substitution. We repeated this
process for all applicable codons within the entire gene set to
arrive at the distributions in figure 4.

For pair probability calculations, we created five separate
scrambled genomes and aggregated the results to compare
the actual pair probabilities to those calculated from scram-
bled sequences. We fold each gene (�50 to +150 relative to
start) and for each base calculate the number of sequences
out of 1,000 which that the base is paired. For each position,
we thus have a distribution of values (one value representing
the pair probability from each gene for that position) that we
compare to the distribution created using synonymous shuf-
fling algorithms.

Protein and Transcript Expression Data

We downloaded the publicly available data sets of pro-
tein abundances in E. coli, calculated from single
molecule fluorescence counting of Taniguchi et al. (2010)
and mass-spectrometry of Lu et al. (2007), and used the
former data set to classify proteins as low and high abundance
due to the greater size of the data set. After mapping genes
back to the genome, we were left with a data set of 1,001
protein abundances that we split according to either the
quartiles or median expression. Additionally, data of
transcript abundances were downloaded from Taniguchi
et al. (2010) and Shiroguchi et al. (2012) and again filtered
for genes that we were able to map back to the genome. All of
these data sets encompass only a subpopulation of the
transcriptome/proteome, but because each experimental
technique has unique biases and limitations that restrict
the subpopulations that they can measure, it is not safe to
assume that genes which could not be quantified are either
lowly or unexpressed. We thus only include genes for which
measurements from the data set in question exist.

Calculation of the CAI

We make a slight alteration to the traditional calculation of
the CAI by replacing the frequency of codon i that codes for
amino acid j (Xi,j) with a position dependent function Pi,jðxÞ.
The function used here is the maximum likelihood estimation
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of the exponential decay function for each codon. The relative
synonymous codon usage (RSCU) in our pdCAI is then:

RSCUi,jðxÞ ¼
Pi,jðxÞ

1
n

Pnj

i¼1

Pi,jðxÞ

, ð15Þ

which makes the weight of codon i also dependent on
position:

wi,jðxÞ ¼
RSCUi,jðxÞ

RSCUi,maxðxÞ
ð16Þ

and the pdCAI:

pdCAIgene ¼ ð
YL

x¼1

wi,jðxÞÞ
1
L ð17Þ

When using the maximum likelihood fits of a uniform
function, this result is analytically equivalent to the traditional
CAI.

Additionally, based on the original formulation of the CAI,
we use the RSCU of codons in the reference set to determine
rare and abundant codons (Sharp and Li 1987). RSCU values
less than 1 are categorized as rare and greater than 1 are
categorized as abundant.

Calculation of the tRNA Adaptation Index

There are a number of ways to classify suboptimal and
optimal codons. We use the codon usage in a reference
set of highly expressed genes to do so and adapt the
nomenclature of rare and abundant (Sharp and Li 1987).
However, to demonstrate the robustness of this finding, we
also classify codons according to their tRNA adaptation index
weights:

Wi ¼
Xnj

i¼1

ð1� sijÞtGCNij ð18Þ

wi ¼
Wi

Wmax
ð19Þ

where n is the number of different tRNA species that read
codoni, tGCNij is the gene copy number of the tRNA, and sij is
a scaling factor to account for wobble interactions in antico-
don recognition (dos Reis et al. 2004). Under this scheme, for
each amino acid, we consider the lowest weight codon as
suboptimal and the highest weight codon as optimal.

Supplementary Material
Supplementary tables S1–S4 and figures S1–S24 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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