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Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress
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Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and
fractal analyses have proved to be useful in investigating human physiological alterations with age and disease.
Similar findings have not been established for any of the model organisms typically studied by biologists, though.
If the physiology of a simpler model organism displays the same characteristics, this fact would open a new
research window on the control mechanisms that organisms use to regulate physiological processes during aging
and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of
Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the
effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling
analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts,
and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition
of age and stress-related adaptive mechanisms that regulate motility.
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Fractal-like fluctuations are a hallmark of healthy physio-
logical systems such as heart rate [1,2], neural spiking [1,2],
and gait dynamics of humans [3]. The widespread prevalence
of fractal-like dynamics in physiological processes refuted
classical theories of physiological control, which assumed
that health is maintained through strict homeostasis and that
fluctuations away from homeostasis should be uncorrelated.
Instead, physiological signals show self-similar patterns across
multiple scales and exhibit long-range correlations in their
fluctuations.

Fractal-like patterns are also widespread in animal behavior
such as the timing of specific movements and diffusive patterns
in the paths of animals moving through their environment. For
example, it has been argued that Lévy flights are an optimal
strategy for landscape exploration in the search for food, sexual
partners, and so on [4]. Lévy flights have been observed in
the foraging behavior of ants [5], albatrosses [6], monkeys
[7], sharks, bony fishes, sea turtles, and penguins [8]. Fractal
patterns have also been observed in the timing of specific
behaviors, such as feeding, sexual, social, and vigilant behavior
in Spanish ibexes [9], fathead minnows [10], wild chimpanzees
[11], and domestic hens [11], respectively.

Here, we examine the behaviors of one of the simplest
multicellular model organisms, Caenorhabditis elegans, and
find that it displays fractal-like movement dynamics. C.
elegans is a prominent model organism in molecular biology
because of its simple body structure and a fixed cell lineage
containing 302 neurons from a total of 959 somatic cells.
Despite its relative simplicity, the nematode shares many
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biological characteristics with more complex organisms
such as humans. They have an organ system that includes
a digestive system, a nervous system, gonads, and muscles
[12,13]. They have a well-characterized life-cycle involving
development, reproduction, and aging [14,15]. Despite their
small genome size (∼100 Megabase versus 3.6 Gigabase for
humans), nearly 40% of its genes are human homologs [16],
and the majority of human disease genes and disease pathways
are present in this nematode [17,18]. These commonalities
make C. elegans an ideal model organism for experimentally
studying health and behavior.

In fact, many aspects of C. elegans behavior have already
been linked to specific biological processes. Aspects of C.
elegans motility have been linked to specific neurons [19],
genes [20], and environmental stimuli [21]. Many behavioral
metrics have been studied for C. elegans, including speed
[22,23], body posture [24], frequency of particular actions
[25], and the configuration of the worm’s body over time
[26]. Despite having a nearly isogenic background, individual
nematodes raised under the same conditions can have a high
degree of individual variability in movement-related behaviors
[27]. Furthermore, even individual C. elegans can show highly
variable behavior when observed for time periods longer than
a few minutes [Fig. 1].

To create a sufficient number of multi-hour time series
tracking the behavior of individual animals, we use the
multiworm tracker’s real-time data acquisition [28] software
and correct imaging and worm identity errors after acquisition
using the worm analysis for live detailed observation (WALDO)
[27] software. Our experimental and software infrastructure
allow us to track tens of animals at a time for multiple hours
while still maintaining the identities of individual animals.

The methods used to acquire all motility data for this paper
were previously described in detail by Winter et al. [27].
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FIG. 1. Self-similarity of C. elegans motility. (a) Our experimen-
tal system enables us to track ten to fifteen worms (at a time) that
are confined within a cooper enclosure 2.5×1.5 cm, the equivalent
of a basketball court for humans. We plot the trajectories of four
worms during a ten minute period. Notice that the variability in
behaviors across individuals. See Supplemental Material for a video
from a single worm [37]. (b) Intermittent behaviors, such as “moving
forward” display a Cantor dustlike behavior, indicating fractality. The
black vertical bars represent periods of forward motion and the white
ones the absence of this behavior. (c) Centroid speed v and head speed
vh time series of a single worm exhibit fluctuations across a broad
range of timescales.

We used Wild-type Bristol isolate of Caenorhabditis elegans
(N2) from the Caenorhabditis Genomic Center (CGC) for all
experiments. Standard methods were used for culturing and
observing C. elegans [20]. Nematodes were age-synchronized
via egg-laying and grown to adulthood at 20 ◦C on 60-mm
nematode growth medium (NGM) plates seeded with 200 μl
of Escherichia coli OP50 strain. The plates were swirled
until they reached a uniform distribution of food across their
surfaces. Ten to fifteen animals were placed on a 60-mm
NGM plate inside a copper frame with 2.5×1.5-cm interior
dimensions. All motility assays were performed inside of a
Percival I-36NL C8 incubator to ensure a nearly constant
environmental temperature.

The time series shown in Fig. 1 displays irregular patterns
that are linked to how the organism processes information
about its internal state and the chemical and mechanical cues
from its surroundings. For example, forward or backward
motion has been related to the activity of specific groups of
neurons during foraging behavior [29]. We focus on three
types of analyses commonly used to detect fractal behavior:
mean-square displacement (MSD), fractal dimension, and
long-range correlations [1,30–36]. By implementing all of
these approaches, we assess whether individual worms change
their position and regulate movement in a manner consistent
with fractal physiology [Fig. 2].
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FIG. 2. Fractality of C. elegans motility. (a) Determination of
diffusive behavior of worms at day one of adulthood. Red dots
are the data, and the black dashed line is a fit to Eq. (1) and the
continuous line represents a random diffusion. γ is significantly
larger than 1, indicating that movement of the worm is not random.
(b) Determination of fractal dimension of intermittent behavior
“moving forward” using the box-counting method. df is smaller
than 1, suggesting that forward motion is not the default behavior,
that is, that there are periods of all lengths in between consecutive
periods of forward motion. The continuous line represents a time
series where only exist forward motion. (c) The determinant of
long-range correlations in velocities time series. Each gray line is
the fluctuation log10 F (n) as a function of the scale log10 n for a
centroid and head speed time series. The square red dots represent
binned averages over all curves and error bars are standard deviations.
The dashed black line is OLS fit to the averages. The continuous line
represents a random process with h = 1/2. The Hurst exponent h > 1
indicates that velocities have long-range persistent correlations. The
numbers between parentheses in all plots are the standard error in the
last digit.

MSD quantifies how an animal moves from its current
position. We have considered the positions time series �ri(t)
to measure the time dependence of the variance of the radial
position, this is, σ 2(t) = 〈[�ri(t) − 〈�ri(t)〉]2〉, where 〈�ri(t)〉 is the
average radial position over all tracks i at time t . For a random
process (Brownian motion) the variance of the position of an
individual increases linearly with time. More generally, the
variance increases with time in a power-law fashion [30–33],
σ 2(t) ∼ tγ , where 0 < γ < 1 corresponds to subdiffusion,
1 < γ < 2 to superdiffusion, γ = 2 to a ballistic diffusion,
and γ = 1 is the memoryless Brownian diffusion regime. For
Lévy flights in a bounded space, the variance can be modeled as
a power-law that saturates for long times [38]. Mathematically,
this can be written as

σ 2(t) =
{
D t γ t < tc
C t > tc

, (1)

where γ is the diffusion exponent, D is a constant related
to the diffusion coefficient, tc is the time need to reach the
boundaries, and C is constant arising from the confinement
within a bounded area.

The results of Fig. 2(a) demonstrate that the exponent
γ is significantly different from 1 for one-day-old worms.
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Superdiffusive behavior was also observed in worms recorded
on a different condition, where no food were present during
the data acquisition [39,40]. Our experimental data enables
us to identify the power-law superdiffusive behavior (γ > 1)
and saturation regime of the variance for t > 100 s consistent
with the theoretical predictions for Lévy flights in a bounded
area [38]. We can also observe that there is a transient regime
where the data falls below the adjusted line, suggesting that
γ ∼ 2 would be a better fit to data for t < 10 s and that there
is a transient period characterized by ballistic motion for short
time scales. The ballistic behavior was also found for assays
with worms recorded on no food [39].

Box-counting fractal dimensions are used to quantify the
fractal nature of intermittent behaviors. C. elegans engages
in several types of intermittent behavior, such as forward and
backward motion, reorientation, and coiling [Fig. 1(b)]. The
time series of these events display a fractal geometry, that is, the
structure of the signals looks similar at different timescales. To
quantitatively evaluate the fractality of these signals, we use the
box-counting method [34] to calculate the fractal dimension of
the intermittent behavior for every nematode. Specifically, we
count the number N (s) of boxes of size s containing at least
one non-null value. For a fractal object, N (s) ∼ s−df , where
df is the Hausdorff fractal dimension of the object [34].

For time series, the fractal dimension must be confined
between df = 0, when the behavior is practically absent, and
df = 1, when the behavior occurs with a uniform probability
across time. In Fig. 2(b) we show a plot of the number of
box N (s) versus 1/s for a single worm. The fractal dimension
exponent df < 1 is a consequence of the unpredictability of the
worm’s behavior and how it reacts to cues in the environment,
such as food or the concentration of excreted substances.
Indeed, it has been shown that the ability of changing
behavior accordingly to external stimulus can be crucial for
organism survival [29]. The fact that we find df < 1 for
forward motion implies that forward motion is not the default
behavior; the worm needs to alternate the states of motion
between the different movements to achieve an optimal search
strategy.

We next use detrended fluctuation analysis (DFA) to quan-
tify long-range correlations in the fluctuations of signals [1,35].
This methodology can be implemented using the following
steps: (i) integrate the time series and divide it into boxes
of equal length n; (ii) for each segment, a local polynomial
trend is calculated and subtracted from the integrated profile
(here we have used a linear function, but higher orders do not
change our results); (iii) for a given box size n, calculate the
root-mean-square fluctuation F (n); (iv) repeat this procedure
for all timescales n. Typically, the fluctuation function has a
power-law dependence on the observation timescale n, F (n) ∼
nh. The parameter h (Hurst exponent) is a scaling exponent
that describes the self-similarity in the fluctuation at different
timescales and is related to the decay of autocorrelation in the
time series. If h = 1/2, the time series has, at most, short-range
correlations. Long-range correlations are present if h �= 1/2. A
h < 1/2 signals antipersistent changes and a h > 1/2 signals
persistent changes.

DFA shows that both centroid and head speed time series
display long-range correlations and present persistence in their
velocity fluctuations for worms on the first day of adulthood.

The behavior of the fluctuation function log10 F (n) as a
function of the scale log10 n for the centroid speed time series
v(t) and head speed vh(t) of all worms are shown in Fig. 2(c).
The power-law trend is clear for all individuals.

It is striking that a simple organism such as C. elegans can
display a behavior of a complexity similar to that found for
human physiology. These findings open a new window for
studying the effects of aging and stress on health, because of
the shorter lives, less restrictive experimentation constraints
on invertebrate testing and the similarities between many
fundamental cellular structures and biological characteristics
of C. elegans and humans.

We know that aging and disease can drastically alter the
fractal characteristics of signals from human physiology. We
next test whether this is also true for C. elegans. To explore
how aging affects the dynamics of worm physiology, we repeat
the previous analysis for worms of different ages [Fig. 3].

Using MSD, we observe the prevalence of super-diffusive
behavior across all ages, but with statistically significant
differences across ages. We show our estimates of γ obtained
via bootstrapping in Fig. 3(a). The distribution of exponents
for each age is shown in Fig. 3(d) and the p values for the
Mann-Whitney test with corrections for multiples comparisons
are shown in Fig. 3(e).

As we mentioned previously, there is a transient ballistic
regime for short times and because we are trying to minimize
the error when fitting the data, this could leads to a diffusion
exponent that do not represent well the differences across ages.
To overcome this, we have calculated the MSD exponent
for intervals in the range tw−1 < t < tw with w = [1,4].
Thus, in Fig. 3(f) we can identify three regimes: ballistic
diffusion (γ = 2) for t < 10 s, superdiffusion (γ > 1) for
10 s < t < 100 s, and the saturation regime (γ ≈ 0) for t >

100 s. By comparing the exponents in the region of interest
(superdiffusion regime) we can see the similar pattern to what
was found in Fig. 3(a).

The fractal dimension characterizing forward motion also
changes with age. In Fig. 3(b), we show the statistical
significance of the differences between ages, where the
differences are indicated by the p values for the Mann-Whitney
test. We can observe that day two is slightly smaller than
the other days (excluding day 5 and 6), and this could be
related to egg-laying since almost 50% of the eggs are laid
in this day [12]. Egg-laying is known to affect movement of
C. elegans. For instance, prior to an egg-laying event, there
is a transient velocity increasing and reversals movement are
inhibited during egg-laying [41]. During egg-laying, the worm
stays in a state of no movement [42], what could directly
change the fractal exponents at this period. Indeed, a decrease
in the fractal dimension from binary behavioral time series
were also observed during pregnancy for Spanish ibexes [9].

The DFA correlation exponent for each track—gray lines
in Fig. 2(c)—showed a prevalence of long-range persistent
correlations in the time series of centroid speed and head speed
across ages, as shown in Fig. 3(c). Although the exponents
are almost the same for all ages, there are some significant
differences, as indicated by the p values for the Mann-Whitney
test. Notice that, in contrast with the differences found in
human physiology where there are alterations on the DFA
exponent for sick people, here we have statistically significant
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FIG. 3. Changes in the scaling exponents with aging. (a) MSD exponent γ as a function of age for 100 samples via bootstrapping. (b)
Fractal dimension df as a function of age. (c) Long-range persistent correlations are pervasive at all ages despite changes in Hurst exponent
for centroid speed and head speed time series. (d) Probability distribution function (PDF) of the exponents calculated using kernel density
estimation. The Kolomogorov-Smirnov test rejects the normal hypothesis at 95% of confidence for all exponents, except for γ at ages in the
range 1 to 5. (e) Matrices of the p values resulting from the multiple comparison to test the null hypothesis that the two samples come from the
same population via Mann-Whitney test with Bonferroni corrections. A p value < 0.05/15 means that the populations are distinct. (f) MSD
exponent γ as a function of age for different time ranges tw−1 < t < tw . The bars are the diffusion exponents γ and the small error bars stand
for the fitting standard error. In all box-plots, the red middle line represents the median, the middle “box” represents the middle 50%, the upper
and lower whiskers bars are the most extreme non-outlier data points, and dots are the outliers.

differences for healthy worms that only differs by their ages
[Fig. 3(e)].

Our results show that the fractal properties of worm motility
depend on its age and life-stage. Age-related changes, such as
egg-laying, seeking mates or food, and deterioration of organs
and tissues (neuronal and muscle system), can be related
to changes in the diffusion exponent γ , fractal dimension
df , and Hurst correlation exponent h. The superpositions of
these effects are manifested as small (but statically significant)
changes in the exponent values. While the measured changes
in exponent values appear to be quite small, one should note
that the measured changes in exponent values for human heart
rate variability were obtained comparing records for healthy
individuals with records obtained for patients suffering from
congestive heart failure, a very serious heart condition that is
frequently fatal [1]. In contrast, our comparisons are performed
for the human equivalent of a 15-year-old and a 40-year-old.

Like aging, stress can change the fractal properties of
physiological systems. Previous works have shown that worms
can change behavior according to the environmental temper-
ature [21,43,44]. C. elegans assays are performed at three
growth temperature: 15 ◦C, 20 ◦C, and 25 ◦C [45]. The stress
caused by the variation of temperature at both extremes of this
range declines fecundity [46,47], can change directionality of
movement [21,43], and increase levels of activity [44]. The
maximum brood sizes for N2 worms in laboratory conditions
is achieved for temperatures slightly above 18 ◦C [45,48].

Deviations from this temperature can cause stress and, because
of that, we used temperature to test different stress conditions
in worms. To do so, we took worms raised at 20 ◦C and put them
at a colder temperature (15 ◦C) and at a higher temperature
(25 ◦C) and recorded their trajectories. The worms used for the
temperature assays were young adults (day 1 of adulthood).
Then, we evaluated how the diffusion exponent γ , fractal
dimension df , and fractal correlation exponent h change with
temperature (Fig. 4).

For the MSD analysis, temperatures different from 20 ◦C
seem to introduce additional noise in the trajectories (in the
range 10 s < t < 100 s), with bigger effects for the lower
temperature [Fig. 4(a)]. The distribution of MSD exponents
γ and statistical differences are shown in Figs. 4(d) and 4(e),
respectively. We can identify the three diffusion regimes (bal-
listic, superdiffusion, and saturation regimes) and differences
on the diffusion exponents, similarly to the results for aging
[Fig. 4(f)].

The fractal dimension df for movement behavior decreases
as temperature increases [Fig. 4(b)]. The correlation exponent
h for the velocities time series also change with temperature
[Fig. 4(c)]. Particularly, we can observe a statistically signifi-
cant increasing in the correlation exponent h of the head speed
as temperature increases. The response to temperature stimulus
seems to affect more head speed since head movements are
associated with exploration and sensing during foraging [49].
The distributions of fractal dimension, and DFA exponents are
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FIG. 4. Changes in the scaling exponents with stress. (a) MSD exponent γ as a function of temperature for 100 samples via bootstrapping.
(b) Fractal dimension df as a function of age. (c) Long-range persistent correlations are pervasive at all ages despite changes in Hurst exponent
for centroid speed and head speed time series. (d) Probability distribution function (PDF) of the exponents calculated via kernel density
estimation. The Kolomogorov-Smirnov test rejects the normal hypothesis at 95% of confidence, for all exponents distributions, except by the
distribution of MSD exponents at the temperatures 15 ◦C and 25 ◦C. (e) Matrices of the p values resulting from the multiple comparison to
test the null hypothesis that the two samples come from the same population via Mann-Whitney test with Bonferroni corrections. A p value
<0.05/3 means that the populations are distinct. (f) MSD exponent γ as a function of temperature for different time ranges tw−1 < t < tw . The
bars are the diffusion exponents γ and the tiny error bars stand for the fitting standard error. In all box plots, the red middle line represents the
median, the middle “box” represents the middle 50%, the upper and lower whiskers bars are the most extreme nonoutlier data points, and dots
are the outliers.

shown in Fig. 4(d) and the matrix of p values are shown in
Fig. 4(e).

Despite our efforts to keep temperature constant during the
experiments, it is not possible remove small fluctuations in the
temperature. It is known that spatial gradients of temperature
lead to changes in directionality of motion [21]. While it is
important to systematically investigate the impact of local
temperature on the self-stimulus of trajectory, this goes beyond
the scopes of this work.

The motility of healthy C. elegans displays fractal prop-
erties reminiscent of human physiological signals. As for
humans [1,3,36,50], we find statistically significant differences
in the fractal behavior of the motility of C. elegans for different

ages and stress levels. Although, the use of C. elegans is already
pervasive in biological studies of aging, our results suggest
that the similarity to the human aging process is deeper than
previously thought; but it extends to subtler perturbations and
subtler phenotypes. We believe that C. elegans can be used
to study how fractal dynamics are created by the regulatory
processes of physiological systems and provide insights into
the fundamental processes required to maintain a healthy
physiology in the face of aging and stress.

This work has been supported by the agency Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
under Grant No. 99999.006842/2015-01.
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