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Abstract

The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of
large number of recorded matches make chess an ideal model systems for the study of population-level learning of a
complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over
seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white
player is positive and that it has been increasing over time. Currently, the average advantage of the white player is~0.17
pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study
the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged
anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the
non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching
a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning
of the features of the game. Additionally, we find that the exponent a characterizing the super-diffusive regime is increasing
toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the
range of abilities of chess players participating in major tournaments.
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Introduction

The study of biological and social complex systems has been the

focus of intense interest for at least three decades [1]. Elections [2],

popularity [3], population growth [4], collective motion of birds

[5] and bacteria [6] are just some examples of complex systems

that physicists have tackled in these pages. An aspect rarely studied

due to the lack of enough data over a long enough period is the

manner in which agents learn the best strategies to deal with the

complexity of the system. For example, as the number of scientific

publication increases, researchers must learn how to choose which

papers to read in depth [7]; while in earlier times word-of-mouth

or listening to a colleague’s talk were reliable strategies, nowadays

the journal in which the study was published or the number of

citations have become, in spite of their many caveats, indicators

that seem to be gaining in popularity.

In order to understand how population-level learning occurs in

the ‘‘real-word,’’ we study it here in a model system. Chess is a

board game that has fascinated humans ever since its invention in

sixth-century India [8]. Chess is an extraordinary complex game

with 1043 legal positions and 10120 distinct matches, as roughly

estimated by Shannon [9]. Recently, Blasius and Tönjes [10] have

showed that scale-free distributions naturally emerge in the

branching process in the game tree of the first game moves in

chess. Remarkably, this breadth of possibilities emerges from a

small set of well-defined rules. This marriage of simple rules and

complex outcomes has made chess an excellent test bed for

studying cognitive processes such as learning [11,12] and also for

testing artificial intelligence algorithms such as evolutionary

algorithms [13].

The very best chess players can foresee the development of a

match 10–15 moves into the future, thus making appropriate

decisions based on his/her expectations of what his opponent will

do. Even though super computers can execute many more

calculations and hold much more information in a quickly

accessible mode, it was not until heuristic rules were developed

to prune the set of possibilities that computers became able to

consistently beat human players. Nowadays, even mobile chess

programs such as Pocket FritzTM (http://chessbase-shop.com/en/

products/pocket_fritz_4) have a Elo rating [14] of 2938 which is

higher than the current best chess player (Magnus Carlsen with a

Elo rating of 2835 – http://fide.com).

The ability of many chess engines to accurately evaluate the

strength of a position enables us to numerically evaluate the move-

by-move white player advantage A(m) and to determine the

evolution of the advantage during the course of a chess match. In

this way, we can probe the patterns of the game to a degree not

before possible and can attempt to uncover population-level
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learning in the historical evolution of chess match dynamics. Here,

we focus on the dynamical aspects of the game by studying the

move-by-move dynamics of the white player’s advantage A(m)
from over seventy thousand high level chess matches.

We have accessed the portable game notation (PGN) files of

73,444 high level chess matches made free available by PGN

MentorTM (http://www.pgnmentor.com). These data span the

last two centuries of the chess history and cover the most

important worldwide chess tournaments, including the World

Championships, Candidate Tournaments, and the Linares

Tournaments (see Table S1). White won 33% of these matches,

black won 24% and 43% ended up with in a draw. For each of

these 73,444 matches, we estimated A(m) using the CraftyTM [15]

chess engine which has an Elo rating of 2950 (see Methods Section

A). The white player advantage A(m) takes into account the

differences in the number and the value of pieces, as well as the

advantage related to the placement of pieces. It is usually

measured in units of pawns, meaning that in the absence of other

factors, it varies by one unit when a pawn (the pieces with lowest

value) is captured. A positive value indicates that the white player

has the advantage and a negative one indicates that the black

player has the advantage. Figure 1A illustrates the move

dependence of A for 50 matches selected at random from the

data base. Intriguingly, A(m) visually resembles the ‘‘erratic’’

movement of diffusive particles.

Results

We first determined how the mean value of the advantage

depends on the move number m across all matches with the same

outcome (Fig. 1B). We observed an oscillatory behavior around a

positive value with a period of 1 move for both match outcomes.

This oscillatory behavior reflects the natural progression of a

match, that is, the fact that the players alternate moves. Not

surprisingly, for matches ending in a draw the average oscillates

around an almost stable value, while for white wins it increases

systematically and for black wins it decreases systematically.

Figure 1B suggests an answer to an historical debate among

chess players: Does playing white yield an advantage? Some

players and theorists argue that because the white player starts the

game, white has the ‘‘initiative, ’’ and that black must endeavor to

Figure 1. Diffusive dynamics of white player’s advantage. (A) Evolution of the advantage A(m) for 50 matches selected at random. We
highlight the trajectories from three World Chess Championship matches: the 6th match between Anand (playing white) and Kramnik in 2008 (green
line), the 2nd match between Karpov (playing white) and Kasparov in 1985 (red line), and the 1st match between Spassky (playing white) and
Petrosian in 1969 (blue line). (B) Mean value of the advantage as a function of move number for matches ending in draws (squares), white wins
(circles) and black wins (triangles). Note the systematically alternating values and the initial positive values of these means for all outcomes. For white
wins, the mean advantage increases with m, while for black wins it decreases. For draws, the mean advantage is approximately a positive constant.
We estimated the advantage of playing white to be 0:14+0:01 and horizontal dashed line represents this value. (C) Variance of the advantage as a
function of move number for matches ending in draws (squares) and white wins (circles) and black wins (triangles). Note the very similar profile of the
variance for white and black wins. Note also that there is practically no diffusion for the initial 7{10 moves, corresponding to the opening period, a
very well studied stage of the game. After the opening stage, the trajectories exhibit a faster than diffusive spreading. For draws, we find this second
regime (10vmv100) to be superdiffusive and characterized by an exponent a~1:49+0:01, as shown by the dashed line. For wins, the variance
presents a more complex behavior. For 10v*mv*40 the variance increases faster than ballistic (hyper-diffusion), but for later stages it displays a
behavior similar to that found for draws. (D) Variance of advantage evaluated after grouping the matches by length and outcome. For draws
(continuous lines), the different match lengths do not change the power-law dependence of the variance. For wins (dashed lines), the variance
systematically approaches the profile obtained for draws as the matches becomes longer. We further note the existence of a very fast diffusive
regime for the latest moves of each grouping.
doi:10.1371/journal.pone.0054165.g001
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equalize the situation. Others argue that playing black is

advantageous because white has to reveal the first move. Chess

experts usually mention that white wins more matches as evidence

of this advantage. However, the winning percentage does not

indicate the magnitude of this advantage. In our analysis, we not

only confirm the existence of an advantage in playing white, but

also estimate its value as 0:14+0:01 by averaging the values of the

mean for matches ending in draws.

We next investigated the diffusive behavior by evaluating the

dependence of the variance of A on the move number m (Fig. 1C).

After grouping the matches by match outcome, we observed for all

outcomes that there is practically no diffusion during the initial

moves. These moves correspond to the opening period of the

match, a stage very well studied and for which there are

recognized sequences of moves that result in balanced positions.

After this initial stage, the variance exhibits an anomalous diffusive

spreading. For matches ending in a draw, we found a super-

diffusive regime (10vmv100) that is described by a power law

with an exponent a~1:49+0:01. We note the very similar profile

of the variance of matches ending in white or black wins.

Matches ending in a win display an hyper-diffusive regime

(aw2)– a signature of nonlinearity and out-of-equilibrium systems

[16]. In fact, the behavior for matches ending in wins is quite

complex and dependent on the match length (Fig. 1D). While

grouping the matches by length does not change the variance

profile of draws, for wins it reveals a very interesting pattern: As

the match length increases the variance profile become similar to

the profile of draws, with the only differences occurring in the last

moves. This result thus suggests that the behavior of the advantage

of matches ending in a win is very similar to a draw. The main

difference occurs in last few moves where an avalanche-like effect

makes the advantage undergo large fluctuations.

Historical Trends
Chess rules have been stable since the 19th century. This

stability increased the game popularity (Fig. 2A) and enabled

players to work toward improving their skill. A consequence of

these efforts is the increasing number of Grandmasters – the

highest title that a player can attain – and the decreasing average

player’s age for receiving this honor (Figs. 2A and 2B).

Intriguingly, the average player’s fitness (measured as the Elo

rating [14]) in Olympic tournaments has remained almost

constant, while the standard deviation of the player’s fitness has

increased fivefold (Figs. 2C and 2D). These historical trends

prompt the question of whether there has been a change in the

diffusive behavior of the match dynamics over the last 150 years.

To answer this question, we investigated the evolution of the

profile of the mean advantage for different periods (Fig. 3A). For

easier visualization, we applied a moving averaging with window

size two to the mean values of A(m). The horizontal lines show the

average values of the means for 20vmv40 and the shaded areas

are 95% confidence intervals obtained via bootstrapping. The

average values are significantly different, showing that the baseline

white player advantage has increased over the last 150 years. We

found that this increase is well described by an exponential

approach with a characteristic time of 67:0+0:1 years to an

asymptotic value of 0:23+0:01 pawns (Fig. 3C). Our results thus

suggest that chess players are learning how to maximize the

advantage of playing white and that this advantage is bounded.

Next, we considered the time evolution of the variance for

matches ending in draws (Fig. 3B). Surprisingly, a seems to be

approaching a value close to that for a ballistic regime. We found

that the exponent a follows an exponential approach with a

characteristic time of 128+9 years to the asymptote a~1:9+0:1
(Fig. 3D). We surmise that this trend is directly connected to an

increase in the typical difference in fitness among players.

Figure 2. Historical changes in chess player demographics. (A) Number of new Chess Grandmaster awarded annually by the world chess
organization (http://fide.com) and the number of players who have participated in the Chess Olympiad (http://www.olimpbase.org) since 1970. Note
the increasing trends in these quantities. (B) Average players’ age when receiving the Grandmaster title. (C) Average Elo rating and (D) standard
deviation of the of Elo rating of players who have participated in the Chess Olympiad. Note the nearly constant value of the average, while the
standard deviation has increased dramatically.
doi:10.1371/journal.pone.0054165.g002
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Specifically, the presence of fitness in a diffusive process has been

shown to give rise to ballistic diffusion [17]. For an illustration of

how differences in fitness are related to a ballistic regime (a~2),

assume that

Ai(mz0:5)~Ai(m)zWizg(m) ð1Þ

describes the advantage of the white player in a match i, where the

difference in fitness between two players is Wi and g(m) is a

Gaussian variable. Wiw0 yields a positive drift in Ai(m) thus

modeling a match where the white player is better. Assuming that

the fitness Wi is drawn from a distribution with finite variance s2
W,

it follows that

s2(m)*s2
W m2 : ð2Þ

Thus, a~2. In the case of chess, the diffusive scenario is not

determined purely by the fitness of players. However, differences

in fitness are certainly an essential ingredient and thus Eq.(1) can

provide insight into the data of Fig. 3D by suggesting that the

typical difference in skill between players has been increasing.

A striking feature of the results of Fig. 3B is the drift of the

crossover move m| at which the power-law regime begins. We

observe that m| is exponentially approaching an asymptote at

15:6+0:6 moves with a characteristic time of 130+12 years

(Fig. 3E). Based on the existence of limiting values for a and m|,

we plot in Figure 3B an extrapolated power law to represent the

limiting diffusive regime (continuous line). We have also found that

the distributions of the match lengths for wins and draws display

exponential decays with characteristics lengths of 13:22+0:02
moves for draws and 11:20+0:02 moves for wins. Moreover, we

find that these characteristic lengths have changed over the history

of chess. For matches ending in draws, we observed a statistically

significant growth of approximately 3:0+0:7 moves per century.

For wins, we find no statistical evidence of growth and the

characteristic length can be approximated by a constant mean of

11:3+0:6 moves (Fig. S1).

Figure 3. Historical trends in the dynamics of highest level chess matches. (A) Mean value of the advantage of matches ending a draw for
three time periods. These curves were smoothed by using moving averaging over windows of size 2. The horizontal lines are the averaged values of
the mean for 20vmv40 and the shaded regions are 95% confidence intervals for these averaged values. (B) Variance of the advantage of matches
ending a draw for three time periods. The shaded regions are 95% confidence intervals for the variance and the colored dashed lines indicate power
law fits to each data set. The horizontal dashed line represents the average variance for the most recent data set and for 1vmv10. Note the
systematic increase of a and of the number of moves in the opening. The symbols on this line indicate the values of m|, the number of moves at
which the diffusion of the advantage changes behavior. The rightmost symbol represent the extrapolated maximum value m|~15:6+0:6. (C) Time
evolution of the white player advantage for matches ending in draws. The solid line represents an exponential approach to an asymptotic value. The
estimated plateau value is 0:23+0:01 pawns and the characteristic time is 67:0+0:1 years. Time evolution of (D) the exponent a and (E) the crossover
move m|. The solid lines are fits to exponential approaches to the asymptotic values a~1:9+0:1 and m|~15:6+0:6. The estimated characteristic
times for convergence are 128+9 years for the diffusive exponent and 130+12 years for the crossover move. Based on the conjecture that a and m|

are approaching limiting values, we plotted a continuous line in Fig 3B to represent this limiting regime.
doi:10.1371/journal.pone.0054165.g003
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A question posed by the time evolution of these quantities is

whether the observed changes are due to learning by chess players

over time or due to a secondary factor such as changes in the

organization of chess tournaments. In order to determine the

answer to this question, we analyze the type of tournaments

included in the database. We find that 88% of the tournaments in

Figure 4. Scale invariance and non-Gaussian properties of the white player’s advantage. Positive tails of the cumulative distribution
function for the normalized advantage j(m) for matches ending in (A) draws and (B) wins. Each line in these plots represents a distribution for a
different value of m in the range 10 to 70. By match outcome, the distributions for different values of m exhibit a good data collapse with tails that
decay slower than a Gaussian distribution (dashed line). Average cumulative distribution for matches ending in (C) draws and (D) wins for four time
periods. We estimated the error bars using bootstrapping. These data support the hypothesis of scaling, that is, the distributions follow a universal
non-Gaussian functional form. The negative tails present a very similar shape (see Fig. S4).
doi:10.1371/journal.pone.0054165.g004

Figure 5. Long-range correlations in white player’s advantage. (A) Detrended fluctuation analysis (DFA, see Methods Section B) of white
player’s advantage increments, that is, DA(m)~A(mz0:5){A(m), for a match ended in a draw and selected at random from the database. For series
with long-range correlations, the relationship between the fluctuation function F (s) and the scale s is a power-law where the exponent is the Hurst
exponent h. Thus, in this log-log plot the relationship is approximated by a straight line with slope equal to h~0:345. In general, we find all these
relationships to be well approximated by straight lines with an average Pearson correlation coefficient of 0:892+0:002. (B) Distribution of the
estimated Hurst exponent h obtained using DFA for matches longer than 50 moves that ended in a draw (squares). The continuous line is a Gaussian
fit to the distribution with mean 0:35 and standard-deviation 0:1. Since hv0:5, it implies an anti-persistent behavior (see Fig. 1B). We have also
evaluated the distribution of h using the shuffled version of these series (circles). For this case, the dashed line is a Gaussian fit to the data with mean
0:54 and standard-deviation 0:09. Note that the shuffled procedure removed the correlations, confirming the existence of long-range correlations in
A(m). (C) Historical changes in the mean Hurst exponent h. Note the significantly small values of h in recent periods, showing that the anti-persistent
behavior has increased for more recent matches.
doi:10.1371/journal.pone.0054165.g005
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the database use ‘‘round-robin’’ pairing (all-play-all) and that there

has been an increasing tendency to employ this pairing scheme

(Fig. S2). In order to further strengthen our conclusions, we

analyze the matches in the database obtained by excluding

tournaments that do not use round-robin pairing. This procedure

has the advantage that it reduces the effect of non-randomness

sampling. As shown in Fig. S3, this procedure does not change the

results of our analyses.

We next studied the distribution profile of the advantage. We

use the normalized advantage

j(m)~
A(m){SA(m)T

s(m)
, ð3Þ

where SA(m)T is the mean value of advantage after m moves and

s(m) is the standard-deviation. Figures 4A and 4B show the

positive tails of the cumulative distribution of j(m) for draws and

wins for 10ƒmƒ70. We observe the good data collapse, which

indicates that the advantages are statistically self-similar, since after

scaling they follow the same universal distribution. Moreover,

Figs. 4D and 4E show that the distribution profile of the

normalized advantage is quite stable over the last 150 years.

These distributions obey a functional form that is significantly

different from a Gaussian distribution (dashed line in the previous

plots). In particular, we observe a more slowly decaying tail,

showing the existence of large fluctuations even for matches

ending in draws.

Another intriguing question is whether there is memory in the

evolution of the white player’s advantage. To investigate this

hypothesis, we consider the time series of advantage increments

DA(m)~A(mz0:5){A(m) for all 5,154 matches ending in a

draw that are longer than 50 moves. We used detrended

fluctuation analysis (DFA, see Methods Section B) to obtain the

Hurst exponent for each match (Fig. 5A). We find h distributed

around 0:35 (Fig. 5B) which indicates the presence of long-range

anti-correlations in the evolution of A(m). A value of hv0:5
indicates the presence of an anti-persistent behavior, that is, the

alternation between large and small values of DA(m) occurs much

more frequently than by chance. This result also agrees with the

oscillating behavior of the mean advantage (Fig. 1B). We also find

that the Hurst exponent h has evolved over time (Fig. 5C). In

particular, we note that the anti-persistent behavior has statistically

increased for the recent two periods, indicating that the alternating

behavior has intensified in this period. We have found a very

similar behavior for matches ending in wins after removing the last

few moves in the match (Fig. S5).

Discussion

We have characterized the advantage dynamics of chess

matches as a self-similar, super-diffusive and long-ranged-memory

process. Our investigation provides insights into the complex

process of creating and disseminating knowledge of a complex

system at the population-level. By studying 150 years of high level

chess, we presented evidence that the dynamics of a chess have

evolved over time in such a way that it appears to be approaching

a steady-state. The baseline advantage of the white player, the

cross-over move m|, and the diffusive exponent a are exponen-

tially approaching asymptotes with different characteristic times.

We hypothesized that the evolution of a are closely related to an

increase in the difference of fitness among players, while the

evolution of the baseline advantage of white player indicates that

players are learning better ways to explore this advantage. The

increase in the cross-over move m| suggest that the opening stage

of a match is becoming longer which may also be related to a

collective learning process. As discussed earlier, hypothesized

historical changes in pairing scheme during tournaments cannot

explain these findings.

Methods

Estimating A(m)
The core of a chess program is called the chess engine. The

chess engine is responsible for finding the best moves given a

particular arrangement of pieces on the board. In order to find the

best moves, the chess engine enumerates and evaluates a huge

number of possible sequences of moves. The evaluation of these

possible moves is made by optimizing a function that usually

defines the white player’s advantage. The way that the function is

defined varies from engine to engine, but some key aspects, such as

the difference of pondered number of pieces, are always present.

Other theoretical aspects of chess such as mobility, king safety, and

center control are also typically considered in a heuristic manner.

A simple example is the definition used for the GNU Chess

program in 1987 (see http://alumni.imsa.edu/~stendahl/comp/

txt/gnuchess.txt). There are tournaments between these programs

aiming to compare the strength of different engines. The results we

present were all obtained using the CraftyTM engine [15]. This is a

free program that is ranked 24th in the Computer Chess Rating

Lists (CCRL - http://www.computerchess.org.uk/ccrl). We have

also compared the results of subsets of our database with other

engines, and the estimate of the white player advantage proved

robust against those changes.

DFA
DFA consists of four steps [18,19]:

i) We define the profile

i)

Y (i)~
Xi

k~1

DA(m){SDA(m)T ;

ii) We cut Y (i) into Ns~N=s non-overlapping segments of

size s, where N is the length of the series;

iii) For each segment a local polynomial trend (here, we have

used linear function) is calculated and subtracted from Y (i),
defining Ys(i)~Y (i){pn(i), where pn(i) represents the

local trend in the n-th segment;

iv) We evaluate the fluctuation function

F (s)~½ 1

Ns

XNs

n~1

SYs(i)
2Tn�1=2

,

where SYs(i)
2Tn is mean square value of Ys(i) over the data in the

n-th segment.

If A(m) is self-similar, the fluctuation function F (s) displays a

power-law dependence on the time scale s, that is, F(s)~ssh, where h

is the Hurst exponent.

Population-Level Learning of the Chess Game
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Supporting Information

Figure S1 Historical trends in match lengths. Cumulative

distribution function for the match lengths ending in (A) draws

and wins (B). Both distributions display an exponential decay with

characteristic lengths 13:22+0:02 for draws and 11:20+0:02 for

wins. (C) Cumulative distribution function for the match lengths

ending white wins (circles) and black wins (triangles). Note that

both distributions are almost indistinguishable. (D) Changes in the

characteristic game length lc over time. For draws (squares), we

observe a statistically significant growth of approximately 3:0+0:7
moves per century (red line). For wins (circles), we find that lc is

approximately constant with mean value 11:3+0:6 (green line).

(TIF)

Figure S2 Percentage of tournaments that employ the round-

robin (all-play-all) pairing scheme. Note the increase in the fraction

of tournaments employing round-robin pairing scheme.

(TIF)

Figure S3 The effect of excluding tournaments using the
swiss-pairing scheme on the historical trends reported
in Fig. 3. It is visually apparent that excluding data from those

tournaments does not significantly change our results. Thus,

temporal changes in the pairing schemes used in chess

tournaments can not explain our findings.

(TIF)

Figure S4 Scale invariance and non-Gaussian proper-
ties of the white player’s advantage. Negative tails of the

cumulative distribution function for the normalized advantage

j(m)~ A(m){SA(m)T
s(m)

for matches ending in (A) draws and (B) wins.

Each line in these plots represents a distribution for a different

value of m in the range 10 to 70. For match outcome, the

distributions for different values of m exhibit a good data collapse

with tails that decay slower than a Gaussian distribution (dashed

line). Average cumulative distribution for matches ending in (C)

draws and (D) wins for four time periods. We estimated the error

bars using bootstrapping.

(TIF)

Figure S5 Match outcome and long-range correlations
in the white player’s advantage. Distribution of the estimated

Hurst exponent h obtained using DFA for matches longer than 50

moves that ended in draws (squares), wins (circles) and wins after

dropping the five last moves of each match. The continuous line is

a Gaussian fit to the distribution for draws with mean 0:35 and

standard-deviation 0:10. For wins, the mean value of h is 0:31 and

the standard-deviation is 0:13. Note that after dropping the five

last moves the distribution of h for wins becomes very close to

distribution obtained for draws. The mean value in this last case is

0:35 and the standard-deviation is 0:11.

(TIF)

Table S1 Full description of our chess database. This

table show all the tournaments that comprise our data base. The

PGN files are free available at http://www.pgnmentor.com/files.

html. Specifically, the files we have used are those grouped under

sections ‘‘Tournaments’’, ‘‘Candidates and Interzonals’’ and

‘‘World Championships’’.

(PDF)
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