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Abstract
How to quantify the impact of a researcher’s or an institution’s body of work is a matter of

increasing importance to scientists, funding agencies, and hiring committees. The use of

bibliometric indicators, such as the h-index or the Journal Impact Factor, have become

widespread despite their known limitations. We argue that most existing bibliometric indica-

tors are inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we pursue

a principled approach to the development of an indicator to quantify the scientific impact of

both individual researchers and research institutions grounded on the functional form of the

distribution of the asymptotic number of citations. We validate our approach using the publi-

cation records of 1,283 researchers from seven scientific and engineering disciplines and

the chemistry departments at the 106 U.S. research institutions classified as “very high

research activity”. Our approach has three distinct advantages. First, it accurately captures

the overall scientific impact of researchers at all career stages, as measured by asymptotic

citation counts. Second, unlike other measures, our indicator is resistant to manipulation

and rewards publication quality over quantity. Third, our approach captures the time-evolu-

tion of the scientific impact of research institutions.

Introduction
The explosive growth in the number of scientific journals and publications has outstripped
researchers’ ability to evaluate them [1]. To choose what to browse, read, or cite from a huge
and growing collection of scientific literature is a challenging task for researchers in nearly all
areas of Science and Technology. In order to search for worthwhile publications, researchers
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are thus relying more and more on heuristic proxies—such as author and journal reputations
—that signal publication quality.

The introduction of the Science Citation Index (SCI) in 1963 [2] and the establishment of bib-
liographic databases spurred the development of bibliometric measures for quantifying the
impact of individual researchers, journals, and institutions. Various bibliometric indicators have
been proposed as measures of impact, including such notorious examples as the Journal Impact
Factor and the h-index [3, 4]. However, several studies revealed that these measures can be incon-
sistent, biased, and, worst of all, susceptible to manipulation [5–15]. For example, the limitations
of the popular h-index include its dependence on discipline and on career length [16].

In recent years, researchers have proposed a veritable alphabet soup of “new”metrics—the
g-index [17], the R-index [18], the ch-index [19], among others—most of which are ad-hoc
heuristics, lacking insight about why or how scientific publications accumulate citations.

The onslaught of dubious indicators based on citation counts has spurred a backlash and
the introduction of so-called “altmetric” indicators of scientific performance. These new indi-
cators completely disregard citations, considering instead such quantities as number of article
downloads or article views, and number of “shares” on diverse social platforms [20–22]. Unfor-
tunately, new research is showing that altmetrics are likely to reflect popularity rather than
impact, that they have incomplete coverage of the scientific disciplines [23, 24], and that they
are extremely susceptible to manipulation. For example, inflating the findings of a publication
in the abstract can lead to misleading press reports [25], and journals’ electronic interfaces can
be designed to inflate article views and/or downloads [26].

Citations are the currency of scientific research. In theory, they are used by researchers to rec-
ognize prior work that was crucial to the study being reported. However, citations are also used
to make the research message more persuasive, to refute previous work, or to align with a given
field [27]. To complicate matters further, the various scientific disciplines differ in their citation
practices [28]. Yet, despite their limitations, citations from articles published in reputable journals
remain the most significant quantity with which to build indicators of scientific impact [12].

It behooves us to develop a measure that is based on a thorough understanding of the cita-
tion accumulation process and also grounded on a rigorous statistical validation. Some
researchers have taken some steps in this direction. Examples include the ranking of research-
ers using PageRank [29] or the beta distribution [30], and the re-scaling of citation distribu-
tions from different disciplines under a universal curve using the lognormal distribution [31].

One crucial aspect of the process of citation accumulation is that it takes a long time to
reach a steady state [32]. This reality is often ignored in many analyses and thus confounds the
interpretation of most measured values. Indeed, the lag between time of publication and per-
ception of impact is becoming increasingly relevant. For example, faced with increasingly large
pools of applicants, hiring committees need to be able to find the most qualified researchers for
the position in an efficient and timely manner [33, 34]. To our knowledge, only a few attempts
have been made in developing indicators that can predict future impact using citation measures
[35, 36] and those have had limited success [37].

Here, we depart from previous efforts by developing a principled approach to the quantifi-
cation of scientific impact. Specifically, we demonstrate that the distribution of the asymptotic
number of accumulated citations to publications by a researcher or from a research institution
is consistent with a discrete lognormal model [32, 38]. We validate our approach with two
datasets acquired from Thomson Reuters’Web of Science (WoS):

• Manually disambiguated citation data pertaining to researchers at the top United States
(U. S.) research institutions across seven disciplines [39]: chemical engineering, chemistry,
ecology, industrial engineering, material science, molecular biology, and psychology;
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• Citation data from the chemistry departments of 106 U.S. institutions classified as “very high
research activity”.

Significantly, our findings enable us to develop a measure of scientific impact with desirable
properties.

The Data
We perform our first set of analyses on the dataset described by Duch et al. [39]. This dataset
contains the disambiguated publication records of 4,204 faculty members at some of the top U.
S. research universities in seven scientific disciplines: chemical engineering, chemistry, ecology,
industrial engineering, material science, molecular biology, and psychology (see [39] for details
about data acquisition and validation). We consider here only 230,964 publications that were
in press by the end of 2000. We do this so that every publication considered has had a time
span of at least 10 years for accruing citations [38] (the researcher’s publication dataset was
gathered in 2010).

We perform our second set of analyses on the publication records of the chemistry depart-
ments at the top U.S. research institutions according to [40]. Using the publications’ address
fields, we identified 382,935 total publications from 106 chemistry departments that were in
press by the end of 2009 (the department’s publication dataset was gathered in 2014).

In our analyses we distinguish between “primary” publications, which report original
research findings, and “secondary” publications, which analyze, promote or compile research
published elsewhere. We identify as primary publications those classified by WoS as “Article”,
“Letter”, or “Note” and identify all other publications types as secondary publications.

Moreover, to ensure that we have enough statistical power to determine the significance of
the model fits, we restrict our analysis to researchers with at least 50 primary research publica-
tions. These restrictions reduce the size of the researchers dataset to 1,283 researchers and
148,878 publications. All 106 departments in our dataset have a total of more than 50 primary
research publications.

The Distribution of the asymptotic Number of Citations
Prior research suggests that a lognormal distribution can be used to approximate the steady-
state citation profile of a researcher’s aggregated publications [31, 41]. Stringer et al. demon-
strated that the distribution of the number n(t) of citations to publications published in a given
journal in a given year converges to a stationary functional form after about ten years [32].
This result was interpreted as an indication that the publications published in a single journal
have a characteristic citation propensity [42] which is captured by the distribution of the “ulti-
mate” number of citations. Here, we investigate the asymptotic number of citations na to the
publications of an individual researcher as well as the set of all researchers in a department at a
research institution.

We hypothesize that na is a function of a latent variable ψ representing a publication’s “cit-
ability” [43]. The citability ψ results from the interplay of several, possibly independent, vari-
ables such as timeliness of the work, originality of approach, strength of conclusion, reputation
of authors and journals, and potential for generalization to other disciplines, just to name a few
[44, 45]. In the simplest case, citability will be additive in all these variables, in which case the
applicability of the central limit theorem implies that ψ will be a Gaussian variable, ψ 2 N(μa,
σa), where μa and σa are respectively the mean and standard deviation of the citability of the
publications by researcher a. Therefore, the impact of a researcher’s body of work is described
by a distribution characterized by just two parameters, μ and σ. Similarly, because in the U.S.
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departments hire faculty based on their estimated quality, the researchers associated with a
department will presumably be similar in stature or potential.

Unlike citations, which are observable and quantifiable, the variables contributing to ψ are
neither easily observable nor easy to quantify. Moreover, mapping ψ into citations is not a triv-
ial matter. Citation counts span many orders of magnitude, with the most highly cited publica-
tions having tens of thousands of citations [46]. Large-scale experiments on cultural markets
indicate that social interactions often create a “rich get richer” dynamics, far distancing the
quality of an underlying item from its impact [47]. Citation dynamics are no different. For
example, Duch et al. recently showed that the h-index has a power-law dependence on the
number of publications Np of a researcher [39]. Here, we reduce the potential distortion of cita-
tion-accruing dynamics by focusing on the logarithm of na. In effect, we take na to be the result
of a multiplicative process of the same variables determining ψ. Thus, we can calculate the
probability pdln(na) that a researcher or department will have a primary research publication
with na citations, as an integral over ψ:

pdlnðnajm; sÞ ¼
Zlog 10ðnaþ1Þ

log 10ðnaÞ

dcffiffiffiffiffiffiffiffiffiffi
2ps2

p exp �ðc� mÞ2
2s2

� �
: ð1Þ

Most researchers also communicate their ideas to their peers via secondary publications
such as conference proceedings which, in many disciplines, are mainly intended to promote
related work published elsewhere. Some secondary publications will have significant timeliness,
in particular review papers and editorial materials, and therefore will likely be cited too. Most
of them, however, will not be cited at all. If accounting for secondary publications, Eq (1) has
to be generalized as:

Pðnajm; s; fs; θÞ ¼ ð1� fsÞpdlnðnajm; sÞ þ fs psðnajθÞ ; ð2Þ
where fs is the fraction of secondary publications in a body of work and ps(na|θ) represents the
probability distribution, characterized by parameters θ and not necessarily lognormal, of na for
secondary research publications. We found that in practice Eq (2) can be well approximated
by:

Pðnajm0; s0; fsÞ ¼ fs d0;na þ ð1� fsÞpdlnðnajm0; s0Þ ;

where δ is the Kronecker delta. Surprisingly, we found that μ0 � μ and σ0 � σ, suggesting that
secondary publications have citation characteristics that are significantly different from those
of primary publications.

Results
Fig 1 shows the cumulative distribution of citations to primary research publications of two
researchers in our database (see S1 File for the results for all 1,283 researchers) and two chemis-
try departments. Using a χ2 goodness-of-fit test with re-sampling [48], we find that we can
reject the discrete lognormal model, Eq (1), for only 2.88% of researchers and 1.13% or depart-
ments in our database. The results of our statistical analysis demonstrate that a discrete lognor-
mal distribution with parameters μ and σ provides an accurate description of the distribution
of the asymptotic number of citations for a researcher’s body of work and for the publications
from an academic department.

Fig 2 displays the sample characteristics of the fitted parameters. The median value of m̂
obtained for the different disciplines lies between 1.0 and 1.6. Using data reported in [28] we
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find a significant correlation (τKendall = 0.62, p = 0.069) between the median value of m̂ for a dis-
cipline and the total number of citation to journals in that discipline (Fig 3). This correlation
suggests that m̂ depends on the typical number of citations to publications within a discipline.
This dependence on discipline size can in principle be corrected by a normalization factor [14,
31, 49].

We also plot the fraction of secondary publications, fs, for all the researchers. We find that
nearly a fourth of the publications of half of all researchers are secondary, but intra-discipline

Fig 1. Distribution of the asymptotic number of citations to publications for researchers and chemistry departments in our database.We fit Eq (1)
to all citations accrued by 2010 to publications published by 2000 for two researchers (top row), and to all citations accrued by 2013 to publications published
in 2000 for two chemistry departments (bottom row). The red line shows the maximum likelihood fit of Eq (1) to the data (blue circles). The light red region
represents the 95% confidence interval estimated using bootstrap (1000 generated samples per empirical data point). We also show the number of
publicationsNp in each set and the parameter values of the individual fits.

doi:10.1371/journal.pone.0143108.g001
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Fig 2. Parameter statistics of all 1,283 researchers in the database grouped by discipline.We show the
maximum likelihood fitted model parameters (top and center) and the fraction of secondary publications
(bottom). The black horizontal dashed line indicates the median of all researchers. For clarity, we do not
show the values of ŝ for 9 researchers that are outliers.

doi:10.1371/journal.pone.0143108.g002

Fig 3. Correlation betweenmedian μ̂ for a discipline and the discipline’s relative size.We use Rosvall et al. [28] reported values of the relative number

of citations to publications in journals of several disciplines as a proxy for relative field size and compare them with the median value of m̂ in each discipline. A

Kendall rank-correlation test yields a τK = 0.62 with p = 0.069. This correlation suggests that m̂ depends on the typical number of citations of a discipline.

doi:10.1371/journal.pone.0143108.g003
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variation is high. Inter-discipline variability is also high: 17% of the publications of a typical
researcher in chemistry are secondary, whereas 60% of the publications of a typical researcher
in industrial engineering are secondary.

Reliability of Estimation
We next investigate the dependence of the parameter estimates on number of publications, Np,
both at the individual level—testing the effect of sample size—and at the discipline level—test-
ing overall dependence on Np. To test for sample size dependence, we fit the model to subsets
of a researcher’s publication list. We find that estimates of σ are more sensitive to sample size
than estimates of μ (S1 and S2 Figs). However, this dependence becomes rapidly negligible as
the sample size approaches the minimum number of publications we required in creating our
sample (Np � 50).

Next, we test whether, at the discipline level, there is any dependence of m̂ on Np. We find
no statistically significant correlation, except for a very weak dependence (R2* 0.035,
p = 0.0052) of ŝ on Np for chemical engineering (S1 Table). This is in stark contrast with the h-
index which exhibits a marked dependence on number of publications [16].

Then, we test for variation of the estimated parameter values along a researcher’s career. To
this end, we order each researcher’s publication records chronologically and divide them into
three sets with equal number of publications and fitted the model to each set of publications.
Each set represents the citability of the publications authored at a particular career stage of a
researcher. Time trends in the estimated values of μ would indicate that the citability of a
researcher’s work changes over time. We find such a change for 25% of all researchers. For over
64% of those researchers whose citability changes of over time we find that m̂ increases (Table 1).

Table 1. Trends of μ̂ on career stage for the seven disciplines considered.

Discipline Upward trend in μ̂ Downward trend in μ̂

ChemEng 12% 19%

Chemistry 26% 6%

Ecology 8% 8%

IndustEng 0% 33%

MatScience 10% 11%

MolBio 5% 8%

Psychology 0% 0%

All 16% 9%

We divide each researcher’s chronologically-ordered publication records into three sets with equal number

of publications (start, middle, and end) and fit the model to each set of publications to obtain m̂s, m̂m, and m̂e.

We then used ordinary-least-squares to perform a linear regression on the time dependence of ðm̂s; m̂m; m̂eÞ.
We then calculate the fraction of researchers whose μ exhibits a statistically significant dependence on

career length, by performing a two-tailed significance test on the slope of the regression. We use a

randomization test (1,000 samples), combined with a multiple hypothesis correction [50] (false discovery

rate of 0.05) to calculate a p-value: for each researcher, we randomly re-order his or her publications,

divide them into three sets with equal number of publications and fit the model to each set of publications,

and calculate the new slope; we obtain a p-value by comparing the original slope of the fit with the

distribution of the randomized slopes.

doi:10.1371/journal.pone.0143108.t001
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In general, a department has many more publications than any single researcher. Thus, we
are able to apply the model from Eq (1) to each year’s worth of departmental publications. This
fine temporal resolution enables us to investigate whether there is any time-dependence in the
citability of the publications from a department. Fig 4 shows the time-evolution of m̂ for the
chemistry departments at four typical research institutions. We see that both m̂ (circles) and ŝ
(vertical bars) remain remarkably stable over the period considered.

Development of an Indicator
In the following, we compare the effectiveness of μ as an impact indicator with that of other indi-
cators. First, we test the extent to which the value of μi for a given researcher is correlated with
the values of other indicators for the same researcher. In order to provide an understanding of
how the number of publicationsNp influences the values of other metrics, we generate thousands
of synthetic samples of na for different values ofNp and μi, and a fixed value of σ for each disci-
pline. We find that μ is tightly correlated with several other measures, especially with the median
number of citations (Fig 5). Indeed m̂ can be estimated from the median number of citations:

m̂ ffi log10½medianðnaÞ� ; ð3Þ

This close relation between mean and logarithm of the median further supports our hypothesis
of a lognormal distribution for the asymptotic number of citations to primary publications by a
researcher.

Fig 4. Time-evolution of departments μ̂. Each circle and bar represent, respectively, the m̂ and ŝ for a given year of publications. We estimate the
parameters in Eq (1) for sets of departmental publications using a “sliding window” of 3 years. Fits for which we cannot reject the hypothesis that the data is
consistent with a discrete lognormal distribution are colored green. We also show each department’s average value of m̂ over the period considered (orange
dashed lines).

doi:10.1371/journal.pone.0143108.g004
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Fig 5. Dependence of popular impact metrics on the values of μ̂ and number of publicationsNp for researchers in chemistry.We generate 1000
synthetic datasets for each of 20 values of m̂ from 0.5 to 2.0, inclusive, and for Np = 50 (blue) andNp = 200 (red). We use the average m̂ of all researchers in
chemistry. For each pair of values of m̂ andNp we calculated the average value and 95% confidence interval. The colored circles indicate the observed
values of the corresponding metrics for chemistry, which have been grouped according to their number of publications Np. Values for 22 researchers fall
outside of the figures’ limits: 3 in A, 7 in B, 4 in C, 3 in D. (A) The total number of citations depends dramatically on Np, which in turn depends strongly on
career length, and can be influenced by just a few highly cited publications. (B) The average number of citations is less susceptible to changes inNp but can
still be influenced by a small number of highly cited publications. (C) The h-index, like the total number of publications, is strongly dependent on Np. (D) The
median number of citations to publications, like the average, is not very dependent on Np, and can capture most of the observed behavior.

doi:10.1371/journal.pone.0143108.g005
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An important factor to consider when designing a bibliometric indicator is its susceptibility
to manipulation. Both the number of publications and total or average number of citations are
easily manipulated, especially with the ongoing proliferation of journals of dubious reputation
[51, 52]. Indeed, the h-index was introduced as a metric that resists manipulation. However, it
is a straightforward exercise to show that one could achieve h / ffiffiffiffiffi

Np

p
exclusively through self-

citations. Indeed, because the h-index does not account for the effect of self-citations, it is
rather susceptible to manipulation, especially by researchers with low values of h [53, 54].

In order to determine the true susceptibility of the h-index to manipulation, we devise a
method to raise a researcher’s h-index using the least possible number of self-citations (see
Materials and Methods for details). Our results suggest that increasing the h-index by a small
amount is no hard feat for researchers with the ability to quickly produce new articles (Fig 6A).

Our proposed indicator, μ, is far more difficult to manipulate. Because it has a more com-
plex dependence on the number of citations than the h-index, to increase μ in an efficient man-
ner we use a process whereby we attempt to increase the median number of citations of a
researcher’s work (see Materials and Methods for details). Specifically, we manipulated μ for all
the researchers by increasing their median number of citations. Remarkably, to increase μ by a
certain factor one needs at least 10 times more self-citations than one would need in order to
increase the h-index by the same factor (Fig 6B).

While a difference of 2 to 3 orders of magnitude in number of required self-citations may
seem surprising for a measure so correlated with citation numbers (Fig 5), the fact that m̂ is

Fig 6. Comparison of the susceptibility of h-index (left) and μ (right) to manipulation. Bottom panel: For each researcher in the database, we add
publications with self-citations until we reach the desired value of index (see main text for details). The dashed black, dotted-dashed black and dotted white
lines indicate the number of publications required to increase the index value by 10%, 50% and 100%, respectively. The solid diagonal black line indicates
when the current value of m̂ is equal to the manipulated m̂. The dark blue vertical line represents the average value of the indicator amongst all researchers in
our database. Top panel: Distributions of current h-index (left) and m̂ (right) for all researchers in the database.

doi:10.1371/journal.pone.0143108.g006
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actually dependent on the citations to half of all primary publications by a researcher (Eq (3))
makes m̂ less susceptible than the h-index to manipulation of citation counts from a small num-
ber of publications. This view is also supported by the fact that increasing citations may actually
decrease m̂, as we may be adding them to a publication that would not be expected to receive
that number of citations given the lognormal model. As a result, manipulation of scientific per-
formance would be very difficult if using a μ-based index.

Comparison of Parameter Statistics
Finally we estimate the parameters in Eq (1) for chemistry journals and compare m̂ of chemis-
try departments and journals in selected years, and all chemistry researchers in our database
(Fig 7. See S4 Fig for ŝ and fs comparison). In order to make sense of this comparison, we must
note a few aspects about the data. The researchers in the database were affiliated with the top
30 chemistry departments in the U.S., whereas the set of chemistry departments covers all the
chemistry departments from very high research activity universities. Thus, it is natural that the
typical m̂ of researchers is higher than that of departments. Not surprisingly, we find that m̂ is
typically the lowest for journals.

Fig 7. Comparison of μ̂ across departments, journals, and researchers.We show the maximum likelihood fitted m̂ for chemistry departments and
chemistry journals in select years, and for all chemistry researchers in our database. The black horizontal dashed lines mark the value of the corresponding
parameter for the Journal of the American Chemical Society in 1995. For clarity, we do not show m̂ for 23 journals that are outliers.

doi:10.1371/journal.pone.0143108.g007
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Discussion
The ever-growing size of the scientific literature precludes researchers from following all devel-
opments from even a single sub-field. Therefore researchers need proxies of quality in order to
identify which publications to browse, read, and cite. Three main heuristics are familiar to
most researchers: institutional reputation, journal reputation, and author reputation.

Author reputation has the greatest limitations. Researchers are not likely to be known out-
side their (sub-)field and young researchers will not even be known outside their labs. Simi-
larly, if we exclude a few journals with multidisciplinary reputations (Nature, Science, PNAS,
NEJM), the reputation of a scientific journal is unlikely to extend outside its field. Institutional
reputations are the most likely to be known broadly. Cambridge, Harvard, Oxford, and Stan-
ford are widely recognized. However, one could argue that institutional reputation is not a par-
ticularly useful heuristic for finding quality publications within a specific research field.

Our results show that the expected citability of scientific publications published by (i) the
researchers in a department, (ii) a given scientific journal, or (iii) a single researcher can be set
on the single scale defined by μ. Thus, for a researcher whose publications are characterized by
a very high μ, authorship of a publication may give a stronger quality signal about the publica-
tion than the journal in which the study is being published. Conversely, for an unknown
researcher the strongest quality signal is likely to be the journal where the research is being
published or the institution the researcher is affiliated with. Our results thus provide strong evi-
dence for the validity of the heuristics used by most researchers and clarify the conditions
under which they are appropriate.

Materials and Methods

Model Fitting and Hypothesis Testing
We estimate the discrete lognormal model parameters of Eq (1) for all 1,283 researchers in our
database using a maximum likelihood estimator [38]. We then test the goodness of the fit, at an
individual level using the χ2 statistical test. We bin the empirical data in such a way that there
are at least 5 expected observation per bin. To assess significance we calculate the w2o statistic
for each researcher and then, for each of them, re-sample their citation records using bootstrap
(1,000 samples) and calculate a new value of the statistics w2i (i = 1, � � �, 1,000). We then extract
a p-value by comparing the observed statistic w2o with the re-sampled χ2 distribution. Finally we
use a multiple hypothesis correction [50], with a false discovery rate of 0.05, when comparing
the model fits with the null hypothesis.

Generation of Theoretical Performance Indicators
For each discipline we take the average value of ŝ and 20 equally spaced values of μ between
0.5 and 2.0. We then generate 1,000 datasets of 50 and 200 publications by random sampling
from Eq (1). We then fit the model individually to these 2,000 synthetic datasets and extracted
the h-index, average number of citations, total number of citations and median number of cita-
tions to publications with at least one citation. Finally, for each value of μ, we calculate the aver-
age and the 95% confidence interval of all the indicators.

Manipulation Procedure for h-index
We try to increase the h-index of a researcher by self-citations alone, i.e., we assume the
researcher does not receive citations from other sources during this procedure. The procedure
works by adding only the minimum required citations to those publications that would cause
the h-index to increase. Consider researcher John Doe who has 3 publications with {na} = (2, 2,
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5). Doe’s h is 2. Assuming those publications don’t get cited by other researchers during this
time period, to increase h by 1, Doe needs to publish only one additional publication with two
self-citations; to increase h by 2 he must instead produce five publications with a total of eight
self-citations, four of which to one of the additional five publications. We execute this proce-
dure for all researchers in the database until they reached a h-index of 100.

Manipulation Procedure for μ
The manipulation of μ is based on Eq (3). We try to change a researcher’s μ by increasing the
median number of citations to publications which have at least one citation already. We con-
sider only self-citations originating from secondary publications, i.e., publications that will not
get cited. For a given corpus of publications we first define a target increase in median, x and
then calculate the number of self-citations needed to increase the current median by x citations
and the corresponding number of secondary publications. We then take the initial corpus of
publications and attempt to increase the median citation by x + 1. We repeat this procedure
until we reach an increase in median citation of 2000.

Supporting Information
S1 File. Distribution of the asymptotic number of citations for all 1,283 researchers. For a
detailed description of the plots see the caption in Fig 1.
(PDF)

S1 Fig. Dependence of μ̂ on number of publications at the individual level.We fit the model

to 1,000 randomized subsets of each researcher’s publication list and compare the m̂ obtained

from fitting each subset of 10, 50, and 100 publications with the m̂ associated with the complete
publication list. Then, for each researcher and subset size, we calculate a z-score using the

mean and standard deviation of the “sub-m̂”. For Np � 50, the dependence on sample size is
negligible for most researchers. Researchers with Np < 100 are omitted from the calculation on
the subset of size 100.
(TIFF)

S2 Fig. Dependence of ŝ estimates on number of publications at the individual level.We

use the same procedure as in S1 Fig, except here we show the results for the dependence of ŝ

on sample size. Estimates of ŝ are more dependent of sample size than m̂. However, as in the

case of m̂, the dependence of ŝ on sample size decays rapidly with increasing sample size.
Researchers with Np < 100 are omitted from the calculation on the subset of size 100.
(TIFF)

S3 Fig. Susceptibility of impact measures to manipulation.We used the same procedure as
in Fig 6, except here we show the required number of publications with self-citations that
researchers need to publish in order to increase their indicators. Other details are the same as
in Fig 6.
(TIFF)

S4 Fig. Comparison of ŝ and fs across departments, journals, and researchers.We show the

maximum likelihood fitted ŝ (top) and the fraction of secondary publications (bottom) for
chemistry departments and chemistry journals in select years, and for all chemistry researchers
in our database. The black horizontal dashed lines mark the value of the corresponding param-

eter for the Journal of the American Chemical Society in 1995. For clarity, we do not show ŝ for
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19 journals and 9 researchers that are outliers.
(TIFF)

S1 Table. Individual lognormal parameters show no dependence on Np.
(PDF)

S2 Table. Individual discipline statistics of the lognormal model parameters.
(PDF)
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