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The role of mentorship in protégé performance
R. Dean Malmgren1,2, Julio M. Ottino1,3 & Luı́s A. Nunes Amaral1,3,4

The role of mentorship in protégé performance is a matter of import-
ance to academic, business and governmental organizations.
Although the benefits of mentorship for protégés, mentors and their
organizations are apparent1–9, the extent to which protégés mimic
their mentors’ career choices and acquire their mentorship skills is
unclear10–16. The importance of a science, technology, engineering
and mathematics workforce to economic growth and the role of
effective mentorship in maintaining a ‘healthy’ such workforce
demand the study of the role of mentorship in academia. Here we
investigate one aspect of mentor emulation by studying mentorship
fecundity—the number of protégés a mentor trains—using data
from the Mathematics Genealogy Project17, which tracks the mentor-
ship record of thousands of mathematicians over several centuries.
We demonstrate that fecundity among academic mathematicians is
correlated with other measures of academic success. We also find
that the average fecundity of mentors remains stable over 60 years of
recorded mentorship. We further discover three significant correla-
tions in mentorship fecundity. First, mentors with low mentorship
fecundities train protégés that go on to have mentorship fecundities
37% higher than expected. Second, in the first third of their careers,
mentors with high fecundities train protégés that go on to have
fecundities 29% higher than expected. Finally, in the last third of
their careers, mentors with high fecundities train protégés that go on
to have fecundities 31% lower than expected.

A large literature supports the hypothesis that protégés and mentors
benefit from the mentoring relationship1,2. Protégés that receive career
coaching and social support, for instance, are reportedly more likely to
have high performance ratings, a higher salary and receive promo-
tions1,3. In return, mentors receive fulfilment not only by altruistically
improving the welfare of their protégés, but also by improving their own
welfare4,5,10. Organizations benefit as well, because protégés are more
likely to be committed to their organization6,7 and to exhibit organiza-
tional citizenship behaviour6. These benefits are not obtained only
through the traditional dyadic mentor–protégé relationship, but also
through peer relationships that supplement protégé development8,9.

The benefits of mentorship underscore the importance of under-
standing how mentors were in turn trained to foster the development
of outstanding mentors. It might be suspected that protégés learn
managerial approaches and motivational techniques from their men-
tors and, as a result, emulate their mentorship methodologies; this
suggests that outstanding mentors are trained by other outstanding
mentors. This possibility is sometimes formalized as the rising-star
hypothesis11,12; it postulates that mentors select up-and-coming pro-
tégés on the basic of their perceived ability and potential and past
performance10,13,14, including promotion history and proactive career
behaviours12. Rising-star protégés are reportedly more likely to
intend to mentor, resulting in a ‘perpetual cycle’ of rising-star pro-
tégés that emulate their mentors by seeking other rising stars as their
protégés15.

However, there is conflicting evidence concerning the rising-star
hypothesis16, so the extent to which protégés mimic their mentors

remains an open question. Indeed, we are unaware of any studies that
systematically track mentorship success over the entire career of a
mentor, so the validity of the rising-star hypothesis has yet to be fully
explored. Here we investigate whether protégés acquire the mentor-
ship skills of their mentors, by studying mentorship fecundity, that is,
the number of protégés that a mentor trains over the course of their
career. This measure is advantageous as it directly measures an out-
come of the mentorship process that is relevant to sustained mentor-
ship, allowing us to quantify the degree to which mentor fecundity
determines protégé fecundity.

Scientific mentorship offers a unique opportunity to study this
question because there is a structured mentorship environment
between advisor and student that is, in principle, readily accessible18,19.
We study a prototypical mentorship network collected from the
Mathematics Genealogy Project17, which aggregates the graduation
date, mentor and protégés of 114,666 mathematicians from as early
as 1637. This database is unique in its scope and coverage, tracking the
career-long mentorship record of a large population of mentors in a
single discipline (see the MPACT Project (http://ils.unc.edu/mpact/)
for a smaller database of theses on information and library sciences
and references therein). From this information, we construct a net-
work in which links are formed from a mentor to each of his k pro-
tégés, where k denotes mentorship fecundity. We focus here on the
7,259 mathematicians who graduated between 1900 and 1960, because
their mentorship record is the most reliable (Methods).

Although the mentorship records gathered from the Mathematics
Genealogy Project provide the most comprehensive data source avail-
able for the study of academic performance throughout a mathemati-
cian’s career, there are obviously other plausible metrics for evaluating
academic performance20–22. We have also compared the mentorship
data against a list of publications for 4,447 mathematicians and a list of
269 inductees into the US National Academy of Sciences (NAS;
Methods). We find that mentorship fecundity is much larger for
NAS members than for non-NAS members (Fig. 1a). We further find
that the number of publications is strongly correlated with fecundity,
regardless of whether or not a mathematician is an NAS member
(Fig. 1b). These results demonstrate that although fecundity is not a
typical measure of academic performance, it is closely related to other
measures of academic success. Thus, even though our investigation
concerns how fecundity is correlated between mentor and protégé, our
results also address questions in the academic evaluation literature
concerning the success of a mathematician.

We first investigate whether it is possible to predict the fecundity of
a mathematician by modelling the empirical fecundity distribution,
p(kjt), as a function of graduation year, t. Considering that some
mathematicians remain in academia throughout their careers whereas
others spend only a portion of their careers in academia, it might be
expected that there are two types of individual when it comes to
academic mentorship fecundity—‘haves’ and ‘have-nots’—in the
sense that mathematicians from these types respectively have or have
not had the opportunity to mentor students throughout their career.
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If each mentor chooses to train a new academic protégé with
probability jh or jhn, and stops training academic protégés otherwise,
depending on whether they are a ‘have’ or, respectively, a ‘have-not’,
then we would expect that the resulting fecundity distribution is a
mixture of two discrete exponential distributions

p(kjH)~php(kjkh)z(1{ph)p(kjkhn) ð1Þ
wherephistheprobabilitythatamathematicianisa‘have’andp(kjkh)and
p(kjkhn) are discrete exponential distributions p(kjk) 5 e2k/k(1 2 e21/k)
with respective average fecundities kh 5 1/ln(jh

21) and
khn 5 1/ln(jhn

21) for ‘haves’ and ‘have-nots’. We estimate the
parameters H 5 {ph, kh, khn} of this distribution from the empirical
data using expectation maximization23. Using Monte Carlo hypo-
thesis testing (Methods), we have found that equation (1) cannot be
rejected as a candidate description of the fecundity distribution p(kjt)
(Fig. 2a–c). For an alternative description of p(kjt), see Supplementary
Discussion and Supplementary Fig. 1.

As might be expected, the probability, ph, that an individual is a
‘have’ experiences drastic changes over time as a result of historical
events, such as the First and Second World Wars, the beginning of the
Cold War and considerable increases in academic funding (Fig. 2d).
In contrast, the average fecundities of ‘haves’ and ‘have-nots’ do not
exhibit systematic historical changes, suggesting that these quantities
offer fundamental insight into the mentorship process among math-
ematicians (Fig. 2e, f). For the sixty year period considered, we find
that �kkh 5 9.8 6 0.4 and �kkhn 5 0.47 6 0.03, where the overbar indi-
cates a time average of the respective average fecundity.

The stationarity of kh and khn also provides a simple heuristic for
classifying an individual as a ‘have’ or a ‘have-not’; by maximum
likelihood, an individual is a ‘have’ if k $ 2 and is a ‘have-not’ other-
wise. These results raise the possibility that similar features, perhaps
with different characteristic scales of fecundity, may be present in
other mentorship domains.

Although our description of the fecundity distribution has high-
lighted a fundamental property of mentorship among mathematicians,
it is not predictive of the behaviour of individual mathematicians in the
sense that fecundity, according to this model, is a random variable
drawn from the distribution in equation (1). We next test whether
protégés mimic the mentorship fecundity of their mentors, by com-
paring protégé fecundity with a suitable null model that does not
introduce correlations in fecundity. As in the study of genealogical
trees, we perform comparisons of the empirical data with networks

generated from uncorrelated branching processes in our investigation
of the mathematician genealogy network. Here graduation date is
equivalent to birth date and mentors and protégés are equivalent to
parents and children, respectively.

In a branching process24, a parent p, born at time tp, has kp children.
Child c of parent p is born at time tc and subsequently has kc children.
The fecundity, k, of each individual is drawn from the conditional
fecundity distribution p(kjt) for an individual born at time t.
Networks generated from this type of branching process are therefore
defined by the birth date of each individual, t, the fecundity distri-
bution p(kjt), and the chronology of child births, {tc}, for each parent
(Fig. 3a).

We compare the mathematician genealogy network with two
ensembles of randomized genealogies from the branching process
family. Random networks from ensemble I retain the birth date of each
individual, the fecundity of each individual and the chronology of child
births for each parent (Fig. 3b), as above. Random networks from
ensemble II additionally restrict parent–child pairs to have the same
age difference, tc 2 tp, as parent–child pairs in the empirical network
(Fig. 3c). All other attributes of these networks are randomized using a
link-switching algorithm25,26 (Methods), so neither of these random-
network ensembles introduces correlations between parent fecundity
and child fecundity or temporal correlations in fecundity. They there-
fore provide a suitable basis for comparison with the mathematician
genealogy network.
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Figure 1 | Relationship between mentorship fecundity and other
performance metrics. a, Cumulative distribution of the mentorship
fecundity for NAS members (red) and non-NAS members (black). NAS
members have an average fecundity of ÆkæNAS 5 14, which is far greater than
the average fecundity of non-NAS members, Ækænon-NAS 5 3.1, indicating that
fecundity is closely related to academic recognition. Not all mathematicians
in the non-NAS group were eligible for NAS membership, owing to
citizenship and other circumstances. This fact makes the result in the figure
all the more striking. b, Average number of publications as a function of the
mentorship fecundity, for NAS members (red) and non-NAS members
(black). NAS members have nearly twice as many publications on average as
non-NAS members for all fecundity levels. Error bars, 1 s.e.
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Figure 2 | Evolution of the fecundity distribution. a–c, Cumulative
distribution of the fecundity of mathematicians that graduated during 1910
(a), 1930 (b) and 1950 (c) (symbols), compared with the best-estimate
predictions of a mixture of two discrete exponentials (lines). Monte Carlo
hypothesis testing confirms that this model can not be rejected as a model of
the fecundity distribution during every year from 1900–1960, as denoted by
the P values above the a 5 0.05 significance level (Methods). d–f, Best-
estimate parameters as functions of time, calculated by maximum likelihood
for a mixture of two discrete exponentials. Dashed lines denote average
parameter values between 1900 and 1960 and coloured circles indicate the
years displayed in panels a–c. The probability, ph, of being a ‘have’ changes
over time, generally in relation to historic events (hashed grey shading
indicates the First and Second World Wars). In contrast, the average
fecundities remain stable, with time-average values of �kkh 5 9.8 6 0.4 and
�kkhn 5 0.47 6 0.03, until 1960, the time at which mentorship records become
incomplete (Methods), and then steadily decrease (grey shaded region).
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To explore the influence of mentor fecundity and age difference on
protégé fecundity, we partition protégés according to the fecundity of
their mentors and the age difference between mentor and protégé,
tc 2 tp. Given our findings (Supplementary Discussion and Sup-
plementary Figs 2 and 3), it is clear that age differences affect fecundity
in a nonrandom manner for protégés whose mentors have kp , 3. We
partition the remaining protégés, whose mentors have kp $ 3, into two
groups: protégés whose mentors are below-average ‘haves’
(3 # kp , 10) and protégés whose mentors are above-average ‘haves’
(kp $ 10). We then partition these three groups of protégés according
to when they graduated during their mentors’ careers. Specifically,
we split each group of protégés into terciles, the most fine-grained
grouping that still gives us sufficient power to examine the statistical

significance of any differences between the empirical data and the null
models.

We use the partitioning of children into classes to examine the
relationship between the average child fecundity, Ækcæ, and the age
difference, tc 2 tp, between parent and child (Fig 4a, b and Supplemen-
tary Fig. 4a, b). If the data were consistent with a branching process,
then we would expect Ækcæ to have no temporal dependence. However,
the regressions between the Ækcæ z-score (Methods) and tc 2 tp deviate
significantly (Fig. 4c and Supplementary Fig. 4c) from this expectation
for both random ensembles, to reveal three distinct features. First,
mentors with kp , 3 train protégés that go on to have mentorship
fecundities 37% higher than expected throughout their careers.
Second, in the first third of their careers, mentors with kp $ 10 train
protégés that go on to have fecundities 29% higher than expected.
Finally, in the last third of their careers, mentors with kp $ 10 train
protégés that go on to have fecundities 31% lower than expected.

The fact that mentors with k , 3 train protégés with higher-than-
expected fecundities throughout their careers is somewhat counter-
intuitive. From the rising-star hypothesis11,12, it might be expected
that protégés trained by mentors with k , 3 are likely to mimic their
mentors and therefore have lower-than-expected fecundities. Our
results demonstrate that this is not the case. One possible explanation
is that mentors with k , 3 are more aware of the resources they must
allocate for effective mentorship, leading to a more enriching men-
torship experience for their protégés. An alternative hypothesis is that
mentors with k , 3 select for, or are selected by, protégés that have a
greater aptitude for mentorship.

The striking temporal correlations for mentors with kp $ 10 are
also intriguing. Because mentors with kp $ 10 represent the upper
echelon of mentors in mathematics, these mentors were probably
‘rising stars’ early in their academic careers. The fact that these men-
tors train protégés with high fecundities early in their careers sup-
ports the rising-star hypothesis.

By the end of these mentors’ careers, however, their protégés have
lower-than-expected fecundities. Perhaps mentors, who ultimately
have high fecundities, spend fewer and fewer resources training each
of their protégés as their careers progress. Alternatively, protégés with
high mentorship fecundity aspirations might court prolific mentors
early in their mentors’ careers whereas protégés with low fecundity
aspirations might court prolific mentors later in their mentors’ careers.
Our findings therefore reveal interesting nuances to the rising-star
hypothesis.

It is unclear whether the temporal correlations we discover in men-
torship fecundity generalize beyond mathematicians in academia.
Anecdotally, mathematicians are thought to perform their best work
at a young age27, a perception that may influence how mentors and
protégés choose each other. Perceptions in other domains, however,
may differ and subsequently influence mentor and protégé selection in
different ways. As data for other academic disciplines18,19, business and
the government becomes available, it will be important to determine
whether temporal correlations in fecundity are a general consequence
of mentorship or are a particular consequence of mentorship for
mathematicians in academia.

Regardless, our results offer another means of judging academic
impact in science as well as the impact of managers on their employ-
ees, both of which are notoriously complicated and risky affairs.
These assessments are multidimensional, metrics and expectations
are domain dependent, and placement of creative output, timescales
of impact and recognition vary significantly from field to field.
Ultimately, the assessment of individuals for awards and promotion
is based on painstaking individual analysis by selection committees
and peers. Although these committees may have varying goals and
incentives, it is important that collective arguments—the kind of
arguments we are making here—be based on sound quantitative
analysis. Although the extent to which our findings extrapolate to
other domains may vary, we are confident that the kind of analysis
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Figure 3 | Branching process null models. a, Subset of the mathematician
genealogy network. Mentors/parents (black circles) are connected to each of
their protégés/children (white circles). The horizontal positions of
mathematicians represent their graduation/birth dates, t. The bottom two
parents were born in 1924, the top two parents were born in 1937, and all
four parents have a child born in 1958. From a parent’s perspective, three
essential features of the empirical network must be preserved in random
networks generated from the two branching process null models: the birth
date, tp, the fecundity, kp, and the chronology of child births, {tc}. b, Random
networks from ensemble I preserve these three essential features. Solid red
lines highlight the links in the empirical network whose end points can be
randomized. Dashed red lines illustrate one of the possible randomization
moves after switching the corresponding pair of links. We note that the age
difference between parent and child is not preserved. c, Random networks
from ensemble II preserve the three essential features as well as the age
difference between parent and child. Solid blue lines of the same colour
highlight the links in the empirical network whose end points can be
randomized. Dashed blue lines illustrate one of the possible randomization
moves after switching the corresponding pair of links. Random networks for
each ensemble are generated by attempting 100 switches per link (Methods).
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presented here will serve to elevate the discourse on scientific and
managerial impact.

METHODS SUMMARY
Data acquisition. We use data from the Mathematics Genealogy Project17 to

identify the 7,259 protégé mathematicians that are in the giant component28 and

graduated between 1900 and 1960, of which 4,447 have linked publication

records through the American Mathematical Society’s research database

MathSciNet. We use a text-matching algorithm29 to semi-automatically match

members of the NAS with mathematicians from the Mathematics Genealogy

Project.

Monte Carlo hypothesis testing for p(kjt). We use Monte Carlo hypothesis

testing30 to determine whether equation (1) with maximum-likelihood23 para-

meters H can be rejected as a candidate model for p(kjt) at the a 5 0.05 signifi-

cance level.

Random-network generation. We use a variation of the Markov chain Monte

Carlo algorithm25,26 to construct each of the 1,000 random networks in ensembles

I and II. Specifically, we restrict the switching of end points of links p R c that

belong to the same link class L, where the link classes are defined as

LI(t) 5 {p R cjtc 5 t} and LII(s, t) 5 {p R cjtp 5 s, tc 5 t} for networks from

ensembles I and II, respectively. Each link class can be thought of as a subgraph,

which can then be randomized in the usual way by attempting 100 switches per

link in the class25,26.

Average-fecundity z-score. By the central limit theorem, the average of variates

drawn from p(kcjtc) is normally distributed because p(kcjtc) is well described by a

mixture of discrete exponential distributions that has finite variance. Given a set

of child fecundities, Kc 5 {kc}, we quantify how significantly a subset of these

child fecundities, Kc*, Kc, deviates from Kc by measuring the z-score of Ækcæ, the

average child fecundity of all nodes within the subset Kc*, compared with Ækcæs,

the average child fecundity computed for children within a subset equivalent to

Kc* in the synthetic networks. That is, we compute z 5 (Ækcæ 2 m)/s, where m is

the ensemble average of {Ækcæs} and s is the standard deviation of the ensemble

{Ækcæs} over the 1,000 realizations generated for our null models.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Mathematics Genealogy Project data. We study a prototypical mentorship

network collected from the Mathematics Genealogy Project17, which aggregates

the graduation dates, mentors and advisees of 114,666 mathematicians from as

early as 1637. From this information, we construct a mathematician genealogy

network in which links are formed from a mentor to each of his or her k protégés.

The data collected by the Mathematics Genealogy Project are self-reported, so

there is no guarantee that the observed genealogy network is a complete descrip-

tion of the mentorship network. In fact, 16,147 mathematicians do not have a

recorded mentor and, of these, 8,336 do not have any recorded protégés. To
avoid having these mathematicians distort our analysis, we restrict our analysis

to the 90,211 mathematicians that comprise the giant component28 of the net-

work; that is, we restrict our analysis to the largest set of connected mathema-

ticians in the mathematician genealogy network.

Although the Mathematics Genealogy Project contains information on math-

ematicians from as early as 1637, this does not necessarily indicate that all of these

records are representative of the evolution of the network. For example, before

1900 the Project records fewer than 52 new graduates per year worldwide.

Furthermore, because mathematicians often have mentorship careers lasting

50 years or more, we are not guaranteed to have complete mentorship records

for mathematicians who graduated after 1960. We therefore restrict our analysis

to the 7,259 protégé mathematicians who graduated between 1900 and 1960, for

whom we believe that the graduation and mentorship record is the most reliable.

MathSciNet data. Of the 7,259 protégé mathematicians that graduated between

1900 and 1960, 4,447 of them have linked MathSciNet publication records,

which are used in our analysis.

US National Academy of Science data. The US National Academy of Science

maintains two databases of its membership. The first database consists of all
deceased members elected to the NAS from as early as 1863. This database

records the name of the inductee, their election year, their date of death and a

link to a biographical sketch. The second database consists of all active members

of the NAS. This database records the name of the inductee, their institution,

their academic field and their election year.

The challenge to matching this data with the Mathematics Genealogy Project

data is that there is no direct link between a member of the NAS and the

Mathematics Genealogy Project, and vice versa. This is further confounded by

the fact that some members of the NAS have the same name. To circumvent these

problems, we use a text-matching algorithm29 to semi-automatically detect whether

a member of the NAS matches a name in the Mathematics Genealogy Project

database. We use this procedure to curate the 269 members of the NAS that

definitively match mathematicians in the Mathematics Genealogy Project database.

Monte Carlo hypothesis testing for p(kjt). Given a model, M, with parameters

Ht for the empirically observed fecundity distribution, p(kjt), we use Monte

Carlo hypothesis testing to determine whether it can be rejected as a candidate

model for p(kjt) (ref. 30). The Monte Carlo hypothesis testing procedure is as

follows. First, we calculate the best-estimate parameters, ht, for model M at time t

using maximum-likelihood estimation23. Second, we compute the test statistic, S

(detailed below), between the model M(Ht) and the empirical fecundity distri-

bution, p(kjt). Next, we generate a synthetic fecundity distribution, ps(k), from

model M(Ht) using the best-estimate parameters, ht, and we treat the synthetic

data exactly the same as we treated the empirical data: first, we calculate the best-

estimate parameters, Hs, for model M from maximum-likelihood estimation;

second, we compute the test statistic, Ss, between the model M(Hs) and the

synthetic fecundity distribution, ps(k). We generate synthetic fecundity distribu-

tions and their corresponding synthetic test statistics until we accumulate an

ensemble of 1,000 Monte Carlo test statistics, {Ss}. Finally, we calculate a two-

tailed P value with a precision of 0.001. As is customary in hypothesis testing, we

reject the model M at time t if the P value is less than a threshold value. We select a

P-value threshold of 0.05; that is, if less than 5% of the synthetic data sets exhibit

deviations in the test statistic that are larger than those observed empirically, the

model is rejected at time t.

Because we are conducting hypothesis tests with the fecundity distribution

p(kjt), which is a distribution with a discrete support, it is important to use a test

statistic S that is appropriate for testing discrete distributions. We use the x2 test

statistic whereby we bin p(kjt) such that each bin has at least one expected

observation according to the model M(Ht). This binning prevents observations

that are exceptionally rare from dominating our statistical test and skewing our

results.

Random-network generation. We use the Markov chain Monte Carlo algo-

rithm25,26 to build random networks from the mathematician genealogy net-

work. The standard version of this algorithm inherently preserves the

fecundity of each individual, but it does not preserve the chronology of child

births, {tc}, for each parent. To obtain random networks belonging to ensemble I

or ensemble II, we restrict the switching of end points of links p that belong to the

same link class L, where the link classes are defined as LI(t) 5 {p R cjtc 5 t} and

LII(s, t) 5 {p R cjtp 5 s, tc 5 t} for networks from ensembles I and II, respectively.

Each link class can be thought of as a subgraph, which can then be randomized

using the Markov chain Monte Carlo algorithm. Here, we attempt 100 switches

per link in each link class, which sufficiently alters random networks away from

the original empirical network25,26. We repeat this procedure 1,000 times to

generate a set of 1,000 random networks for each ensemble.

Average-fecundity z-score. The average of variates drawn from p(kcjtc) is normally

distributed because p(kcjtc) is well described by a mixture of discrete exponential

distributions—a distribution with finite variance—and, thus, the central limit

theorem applies. Given a set of child fecundities, Kc 5 {kc}, we quantify how

significantly a subset, Kc*, of these child fecundities deviates from Kc, by measuring

the z-score of Ækcæ, the average child fecundity of all nodes within the subset Kc*,

compared with Ækcæs, the average child fecundity computed for children within a

subset equivalent to Kc* in the synthetic networks. That is, we compute

z 5 (Ækcæ 2 m)/s, where m is the ensemble average of {Ækcæs} and s is the standard

deviation of the ensemble {Ækcæs} over the 1,000 realizations generated for our null

models.
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